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Abstract

Let k be an algebraically closed field of positive characteristic p. Given parameters
t,c € k we form the rational Cherednik algebra Hy .(Sy,H) for n = 2,3 and consider its
representation theory over k. For each irreducible representation 7 of S,, there is a Verma
module M, .(7) which is a module for H; .(S,,h) and this module has a unique maximal
proper graded submodule J; o(7). The quotient My o(7)/J;..(7) is a graded, irreducible
representation L (1) of Hy (S, bh) in category O and all simple objects in O are of this
form. Our goal is to describe the representations L; .(7) for all possible values of p, ¢, ¢,
and 7, by calculating their characters, Hilbert polynomials, and specifying the generators
of Ji (7). We achieve this goal, filling gaps in the literature and describing these modules

completely and explicitly, in all cases except one where we provide a conjecture.

Introduction

Rational Cherednik algebras were introduced in 2002 by Pavel Etingof and Victor
Ginzburg [EtGi02], building on earlier work of Ivan Cherednik [Ch92, Ch95]. Since then, the
representation theory of these algebras has been studied extensively. The vast majority of
work on the representation theory of rational Cherednik algebras takes place over fields
of characteristic 0 [DJO94, BEG03a, BEG03b, ChEt03, GGORO03, Go03, Du04, Gr08|.
Although much less is known in positive characteristic, several papers have been published
[La05, BFG06, BeMal3, BaCh13a, BaCh13b, DeSal4, DeSul6, CaKa21].

Rational Cherednik algebras are constructed from reflection groups, such as the symmetric
groups. In our work, we study the representation theory of rational Cherednik algebras
constructed from the symmetric groups S2 and S3 over an algebraically closed field k of
positive characteristic p. Given two parameters ¢, ¢ € k, we denote by Hy .(Sy, ) the rational
Cherednik algebra associated to the symmetric group S,. The representation theory of
H; .(Sy,b) falls into distinct situations depending on its parameters.

The first dichotomy is that ¢ = 0 behaves differently than ¢ = 1. Secondly, the cases
p < n and p > n have distinct behaviour, related to the representation theory of S, in
positive characteristic. Finally, the parameter ¢ has one behaviour for generic values, but can
have special behaviour at particular values. In characteristic p > n the generic values are
¢ # 0 when t =0 and ¢ ¢ F, when ¢ = 1; conversely, when ¢t = 0 the value ¢ = 0 is a special
case, and when t = 1 the values of ¢ € {0,1,2,...,p — 1} are special.

We perform the customary task of describing irreducible modules for our algebra in some
fixed category. We study the category O as defined in [BaChl3a], which is analogous to
categories O found in other contexts, but the definition is somewhat different to make it
suitable for nonzero characteristic.

As rational Cherednik algebras are constructed from reflection groups, we can construct

modules for rational Cherednik algebras from representations of reflection groups. For each
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irreducible representation 7 of S,, we can construct a Verma module, denoted M; .(7), which is
an induced graded module for Hy .(Sy, h). These Verma modules are the standard objects in
our work and, as usual, they have unique irreducible quotients, denoted Ly .(7), which belong
to the category . Therefore in order to understand Verma modules (and consequently
their irreducible quotients) it is important to understand the representation theory of the
symmetric group.

For instance, the irreducible representations of S,, vary depending on the characteristic p
of k. In characteristic 0 and characteristic p > 2, the symmetric group Ss has two irreducible
representations up to isomorphism, triv and sign, while in characteristic p = 2 there is only
one, triv. Similarly, in characteristic 0 and characteristic p > 3, S3 has three irreducible
representations up to isomorphism (triv, sign and stand) but in characteristic p = 3 there
are only two, which are triv and sign, whereas in characteristic p = 2 there are only
two, which are triv and stand. In positive characteristic, M;.(7) has a unique maximal
proper graded submodule denoted J; (1) with Ly (7) = My (7)/Jic(7) and the L; .(T) are
all finite-dimensional and graded. The behaviour of Verma modules (and consequently their

irreducible quotients) varies as we vary the parameters p, ¢, ¢ and 7.

The aim of this thesis is to describe the irreducible modules Ly .(7) for Hy.(S2,h) and
H; .(S3,h) for all possible values of p, t, ¢ and 7. We do this by giving their characters,
Hilbert polynomials, and the generators of J; (7).

A crucial concept in our work is that of singular vectors, which are elements of a Verma
module (or its quotients) that generate proper graded submodules. In order to obtain the
irreducible quotient of a Verma module, we must take a quotient by the maximal proper
graded submodule J; (7). Therefore it is important to understand the singular vectors, as
they are the generators of J; (7). Some authors, such as [DeSal4], provide the character
and Hilbert polynomials of irreducible modules but do not describe the singular vectors.
Other authors, such as [DeSul6] and [CaKa2l], provide the singular vectors and Hilbert
polynomials, but do not provide characters. Our goal is to calculate the irreducible modules
and provide a complete description of their characters, Hilbert polynomials, and singular

vectors.

Our primary method utilises the grading on Verma modules to search for singular vectors
systematically degree by degree. Some vectors are only singular modulo a quotient by other
singular vectors of lower degree, therefore when searching for singular vectors we must begin
in low degree and work up. We often use properties of the Casimir operator to further reduce
the space in which we need to look. The Casimir operator acts by a fixed value on each
irreducible S,, representation, such as those spanned by singular vectors. This, along with
a graded property of the Casimir operator, allows us to restrict in which degrees singular
vectors can occur, and even what form they can take. Where possible, we use a particular
basis of Verma modules that simplifies our computations. We provide a basis of the Verma

module M, (1) for Hy.(S3,h) which is compatible with the decomposition of each graded
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piece of the Verma module into irreducible S representations. This basis is also primarily
composed of symmetric polynomials which behave well in calculations.

The character of an irreducible module records how each graded piece decomposes into
finite-dimensional representations of .S,,, while the Hilbert polynomial records the dimension
of each graded piece as a vector space. More precisely, the coefficients of the character
represent congruence classes in the Grothendieck group of the category of finite dimensional
representations of S,. In characterisic p > n, if ¢ is not generic then ¢ € {0,1,...,p — 1}.
We sometimes consider this value as an integer ¢ € Z, such as when stating inequalities or
when ¢ appears in exponents, and other times it is an element ¢ € IF, C k, such as when it

appears in the coefficients of a singular vector.

The following is a summary of the results in this thesis.
The part of Theorem 1 concerning characteristic p > 3 is partially proved in the work of
[La05], as discussed in Chapter 5, but we consider all characteristics and additionally provide
all characters.
The part of Theorem 2 concerning the case of 7 = triv is partially proved in the work of
[CaKa21] which provides the Hilbert polynomials and singular vectors. We prove the case of
7 = stand and additionally calculate characters in all cases.
The part of Theorem 3 concerning the case of 7 = triv is partially proved in the work of
[DeSul6] which provides the Hilbert polynomials and singular vectors. We also consider the
case of 7 = sign and calculate characters in all cases.
The part of Theorem 4 concerning Hilbert series and characters is proved in the work of
[DeSald]. We contribute the singular vectors in all cases and demonstrate a novel approach
to the proof using a particular basis.
The part of Theorem 5 concerning the case of 7 = triv is partially proved by [Lil4]. Our
contribution is providing the characters, and also solving the remaining unknown case of
T = triv where p/2 < ¢ < 2p/3. We prove new results in the case of 7 = stand at special

values of ¢ which is a case that had not previously been considered.



Theorem 1. The characters and Hilbert polynomials of the irreducible representation Ly .(7)

of the rational Cherednik algebra H; .(S2,h), for any p, ¢, c and 7, are given by the following

tables.

Characters:

p= 2 T = triv
t=0,all ¢ [triv]
t=1,all ¢ | [triv] 4+ [triv]z
p>2 T =triv
t=0,c=0 [triv]
t=0,c#0 [triv] + [sign|z
1=z o z2(1 = 2%
t=1,c¢F, [triv] . + [51gn}_722
t=1 ) _

) 1— c+p+1 1— 2¢c+p—1

0<c<p/2 | [triv] Z_ = + [sign}z(liﬁ)
t=1 . .

’ 1 — »2¢ p+1 1— 2c—p—1
p/2<c<p | [triv] Z_ = + [sign}z(liﬁ)
p>2 T =sign

t=0,c=0 [sign]
t=0,c#0 [sign| + [triv]z
— 2 (1— 2p)
) z .2 z
t = 1, C ¢ Fp [Slgn] 1_ 22 =+ [ter}ﬁ
t=1 2 — —
) ' 1— 2 c+p+1 ) 2(1 — 5 2c+p 1)
0<c<p/2 | [sign] 1 + [triv] 2
t=1 ) — _
) 1— c+3p+1 1— 2c+3p—1
p/2 <c<p | [sign] f_ = + [triv] i 12_ = )
Hilbert polynomials:
p=2 T =triv
t=0,all ¢ 1
t=1,all c 1+2
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p>2 T =triv
t=0,c=0 1
t=0,c#0 142
1— 2%
t=1 F
7C¢ p 1—2
t=1 9
’ 1 — z%¢tp
0<c<p/2 | ——
<c<p/ T
2t:17 1 — z2c—p
<c<
p/2<c<p | ——

p>2 T = sign
t=0,c=0 1
t=0,c#0 1+ 2
1— 2%
t=1 F
7C¢ p 1—2
t=1 _9
) 1—2 c+p
0<c<p/2 | ———
<c<p/ T
t:17 1_z—2c+3p
2<ce< _—
p/2<c<p T

In all cases, we also calculate the singular vectors.

Proof. This is Theorem 6.0.2 in Chapter 6. The proof for t = 0 is found in Section 6.1 and

the proof for t =1 is found in Section 6.2.

O

Theorem 2. The characters and Hilbert polynomials of the irreducible representation Ly .(7)

of the rational Cherednik algebra Hy .(S3,h) over an algebraically closed field of characteristic

2, for any t, c and 7, are given by the following tables.

Characters:
p=2 T =triv
t=0,c=0 [triv]
t=0,c#0 [triv] + [stand](z + 2?) + [triv]z?
t=1,c¢Fy | ([triv]+ [stand]z + [triv]z?)([triv] 4 [stand]z? 4 [stand]z* + [triv]z0)
t=1,¢=0 [triv] + [stand]z + [triv]z?
t=1,c=1 [triv]
p= 7 = stand
t=0,c=0 [stand]
t=0,c#0 [stand] + ([triv] + [sign])z + [stand]2?
t=1,cg¢Fy | [stand](1+ 2+ 22+ 223 + 2% + 2% + 20) 4 2[triv](z + 22 + 24 + 29)
t=1,¢=0 [stand] + ([stand] + 2[triv])z + [stand]z?
t=1,c=1 | [stand](1+ 2 + 22 + 223 4+ 2% + 2% + 26) + [triv](z + 222 + 22* + 25)
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Hilbert polynomials:

p=2 T =triv T = stand
t=0,c=0 1 2
t=0,c#0 14224222423 2+ 224222
[CaKa21], Thm 2.11
(1—24)(1 - 29) 2(1 — 22)(1 — 29)
t=1c¢F, (1—2)2 (1— 2)2

[CaKa21], Thm 3.17
t=1,¢=0 (14 2)? 2+ 4z + 222

2—z— 23— 25— T4 9,8

t=1,c=1 1
‘ (1-2)7?

[Li14], Thm. 3.2

In all cases, the singular vectors are known.

Proof. This is Theorem 8.0.1 in Chapter 8. The irreducible representation L;.(triv) is

described in the following lemmas and propositions:

e for t =0, ¢ = 0 in Proposition 2.6.11 or Proposition 4.1.4;

for t =0, ¢ # 0 in Lemma 8.1.2;

fort =1, ¢# 0,1 in Lemma 8.2.2;

fort =1, ¢ =0 in Lemma 2.6.13;

for t =1, ¢ =1 in Proposition 4.1.4.

The irreducible representation L; .(stand) is described in the following lemmas and proposi-

tions:

e for t =0, ¢ = 0 in Proposition 2.6.11;

for t = 0,¢ # 0 in Lemma 8.3.3;

fort =1, ¢c# 0,1 in Lemma 8.4.7 and Lemma 8.4.12;

fort=1, c=0 in Lemma 2.6.13;

fort=1, c=1 in Lemma 8.5.1.
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Theorem 3. The characters and Hilbert polynomials of the irreducible representation Ly .(7)
of the rational Cherednik algebra Hy .(S3,h) over an algebraically closed field of characteristic

3, for any t,c and 7, are given by the following tables.

p=3 T =triv
t=20,all c [triv]
t=1,allc [triv](1 + 2 + 222 4+ 23 4+ 2*) + [sign](z + 22 + 23)
p=3 T = sign
t=0,allc [sign]
t=1,allc [sign](1 + 2 + 222 + 23 + 2%) + [triv](z + 22 + 23)
p= T =triv T = s8ign
t=0,all ¢ 1 1
1-23\? 1—23\?
t=1,all c (1—2) <1—z)
[DeSu16], Thm 4.1

In all cases, we calculate the singular vectors.

Proof. This is Theorem 9.0.1 in Chapter 9. The irreducible representation L;.(triv) is

described via its singular vectors, character and Hilbert polynomial in the following Lemmas:
e for t =0 and any ¢, in Lemma 9.1.1;
e for t =1 and any ¢, in Lemma 9.2.1.

The analogous descriptions of the irreducible representation L .(sign) can be deduced from
the description of L;_.(triv) and Corollary 2.8.3. Note that the Hilbert polynomials of
Ly o(triv) for generic ¢ are also known from Theorem 5.4.1 ([DeSul6], Theorem 4.1). O
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Theorem 4. The characters and the Hilbert polynomials of the irreducible representation
L; (1) of the rational Cherednik algebra H;.(S3,h) over an algebraically closed field of

characteristic p > 3, for generic ¢, t = 0,1, and any 7, are given by the following tables.

Characters:
p>3 t =0, ¢ # 0 generic t=1,c¢F,
= triv [triv] 4 [stand](z + 2%) + [sign]2? Xs(y)(2) - (1= 22)(1 = 2%)
[DeSa14], Prop 4.1 [DeSal1l], Prop 4.2
T =sign [sign] + [stand](z + 2?) + [triv]z® Xs@)(2) - [sign](1 — 2%P)(1 — 2°P)
[DeSa14], Prop 4.1 [DeSal14], Prop 4.2
+ — stand | [stand] + ([triv] + [sign])z + [stand]z® | Xs@p+)(2) - [stand](1 — 2P)(1 — 2°F)
[DeSa1}], Prop 4.1 [DeSall], Prop 4.2
where
1

([ftriv] + [stand](z + 2%) + [sign]2?).

Xs()(2) = (1—22)(1— 29)

Hilbert polynomials:

p>3 t =0, ¢ # 0 generic t=1,c¢F,

(1 — 2%°)(1 — 2%P)
(1-2)?
[DeSal14], Prop 4.1 [DeSal1l], Prop 4.2

T=triv | 1+2(z+2%)+23

(1 —2%)(1 — 2%P)
(1—2)?
[DeSal14], Prop 4.1 [DeSal1l4], Prop 4.2

T = sign 1+2(z +2%) +2°

2(1 — 2P)(1 — 2°P)
2
T — stand 2422422 e

[DeSa14], Prop 4.1 [DeSal14], Prop 4.2

The characters and Hilbert polynomials are already known from [DeSal4]. Our primary

contribution is providing formulas for the singular vectors in all cases.

Proof. This is Theorem 11.0.1 in Chapter 11. The generic values of ¢ (¢ # 0 for ¢ = 0 and
c ¢ Iy for t = 1) are given in Proposition 4.1.3. For those values, the characters and Hilbert
polynomials are given by [DeSal4| in Propositions 4.1 and 4.2 of their paper [DeSal4], as
discussed in Proposition 5.3.1 and Proposition 5.3.2 of Section 5.3.

For t = 0,1 and 7 = triv, sign, the Hilbert polynomial of L;.(7) for generic ¢ from Prop-

osition 5.3.1 and Proposition 5.3.2 coincides with the Hilbert polynomials of Ny .(7) from



Examples 4.1.1 and 4.1.2, so we conclude that L; (1) = N; (7). In this case all the singular
vectors are known; for ¢ = 0 they are o; ® v for ¢ = 2,3 and v € 7, and for t = 1 they are
o? @uvfori=2,3andverT.

For t = 0,1 and 7 = stand, comparing the Hilbert polynomials of L;.(stand) for generic ¢
from Proposition 5.3.1 and Proposition 5.3.2 with the Hilbert polynomials of of N; .(stand)
from Examples 4.1.1 and 4.1.2 shows that L, .(7) is a proper quotient of Ny .(7). For ¢t = 0 the
singular vectors are computed in Lemma 11.1.1, and alternatively are available in a different
basis in Corollary 8.3.5. For ¢ = 1 the singular vectors are computed in Lemma 11.2.8, and
the Hilbert polynomial of the quotient of N; .(stand) by these singular vectors is computed in
Lemma 11.2.19. Observing this polynomial is equal to the Hilbert polynomial of L; .(stand),

we conclude this quotient is irreducible. Its character is then straightforward to compute. [

Theorem 5. The irreducible representations Ly () of the rational Cherednik algebra H; (S5, b)
over an algebraically closed field of characteristic p > 3, for special ¢, t = 0,1, and any 7, are

described by the following tables.

Characters:
p>3 T =1triv
t=0,c=0 [triv]
b= 17 c=0 XS(P)(h*)(Z)
t = 1, XS(h*)(Z) . ([triv] _ [stand]z3c+p + [sign]22(3c+p))
0<c<p/3
t=1, X5 (2) - ([triv] — [stand]z3P + [sign]z2(¢P))
p/3<c<p/2
t=1, Xs(v+)(2) - ([triv] — [sign]z07)(1 — 27)
p/2<c<2p/3
t=1, Xs(p)(2) - ([triv] — [stand]2 % 4 [sign]z2(c2P))
2p/3 <c<p
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p>3 T = sign
t=0,c=0 [sign]
t=1,¢=0 X5t (p+) (%) - [sign]
t=1, Xs@+)(2) - ([sign] — [stand]zP~3¢ + [triv]zQ(p_?’C))
0<c<p/3
t=1, Xs()(2) - ([sign] — [triv]z=0et3) (1 — 2P)
p/3<c<p/2
t=1, Xs(y)(2) - ([sign] — [stand]z2P—3¢ + [triv]zQ(Qp*?’c))
p/2 <c<2p/3
t=1, Xs(y+)(2) - ([sign] — [stand]z~3¢ + [triv]z2(4P—30))
2p/3<c<p
p>3 T = stand
t=0,c= [stand]
t=1,c= X5 5+ (2) - [stand]
t=1, Xs(p+)(2) - ([stand] — [triv]zP~3¢ — [stand]zP — [sign]|2P "% + 2[sign]2?P)
0<c<p/3
t=1, Xs(p+)(2) - ([stand] — [sign]z 77" — [triv]2® 3¢ — [sign]2PT3¢ — [triv]2"P 7% + [stand]z?P)
p/3 <c<p/2
t=1, Xs(p+)(2) - ([stand] — [triv]z 3T — [sign]23¢ — [triv]z 3P — [sign|23“T? + [stand]z?P)
p/2 < e<2p/3
t=1, Xs(y+)(2) - ([stand] — [sign]z3"% — [stand]z? — [triv]z*P~3¢ + 2triv]z?)
2p/3<c<p
with

1

Xs(p+)(2) = A== ([triv] + [stand](z + 22) + [sign]z3) ,

Xscn)(;,*)(z) = XS(h*)(Z) - (1 — [stand]2” + [Sign]ZQP)-
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Hilbert polynomials:

p>3 T =triv T = sign
t=0,c=0 1 1
t=1

S C I O]
)
e | (D) |

(1 — 25¢73P)(1 — 2P)
1=

p/2 <c<2p/3

1_Z2p—3c 2
()

1— 230—2p 2 1— Z4p—3c 2
2p/3 <c< _ _
p/ csp < 1—2 ) ( 1—2z >
[Li14] (partial)
p>3 7 = stand
t=0,c=0 2
t=1
1—2P\?
=0 2
: ()
92 _ Zp—3c — 9P _ Zp+30 T 222;)
0<ec<p/3
c<w/ (1-2)
2 _ Z—p+3c _ zSp—3c _ Zp+3c _ Z5p—3c + 2Z4p
3<c< 2
9 _ Z73c+2p _ Z3c _ Zf3c+4p _ Z3c+2p + 2Z4p
2<c<2p/3
5 /3 e 2 _ Z3C—2p — 9P _ Z4p—3c + 22217
C
p p (1 — 2)2

In all cases, the singular vectors are known explicitly and are calculated by us for ¢ in
the range p/2 < ¢ < 2p/3 and otherwise given by [Lil4]. The character formulas are not
provided by [Lil4] but they are easily calculated from the singular vectors so we include them
for completeness. When 7 = stand we rely on the minor technical assumption 12.2.1 for ¢ in

the range p/6 < ¢ < p/3, and the results for ¢ in the range p/3 < ¢ < 2p/3 are conjectural.
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Proof. This is Theorem 12.0.1 in Chapter 12. For all 7 and ¢, the case ¢ = 0 is standard;
when t = 0, the result is explained in Proposition 2.6.11, while for ¢ = 1 the result follows
from Proposition 2.6.13 and Corollary 7.2.6.

For 7 = triv, the remaining cases of t = 1, ¢ # 0 € [F,, fall into several cases depending
on where c lies in the set {0,1,...,p — 1}. The paper [Lil4] deals with all these intervals
except one, p/2 < ¢ < 2p/3, where they give conjectured degrees of the generators. The work
of [Lil4] can be found in Section 5.2 and we deal with the remaining case in Section 12.1.

For 7 = sign, the character formulas follow from the character formulas for triv by
Corollary 2.8.3.

For 7 = stand t = 1 and ¢ € T, the case 0 < ¢ < p/3 is done with all the proofs in
Section 12.2; the case p/3 < ¢ < p/2 is stated conjecturally and with no proofs at the end of
that section. The cases p/2 < ¢ < p follow from them using Corollary 2.8.3 and the fact that
stand ® sign = stand. 0

The thesis is organised as follows:

e In Chapter 1 we give a basic description of reflection groups and the representation

theory of the symmetric groups Se and S3 in positive characteristic.

e In Chapter 2 we cover the definition of the rational Cherednik algebra, and give a
detailed description of its representation theory in positive characteristic. We also
describe a correspondence between certain irreducible representations which can reduce

the number of cases we need to calculate.

e In Chapter 3 we discuss the symmetric group as a reflection group and its reflection

representations in positive characteristic. We also describe the symmetric invariants.

e In Chapter 4 we specialise earlier concepts to the specific case of the rational Cherednik
algebra Hy (S, bh) in positive characteristic. We also explore how the representation
theory of Hy.(Sy,h) in our conventions differs from other authors. We explain how,
in certain characteristic, we can translate results between these conventions and show
that in this case the representation theory of Hy .(Sy,h) does not depend on the choice

of convention.

e In Chapter 5 we review similar work from the literature and explain how this work

compares with ours. We also briefly mention other adjacent work in the literature.

e In Chapter 6 we prove Theorem 1 and describe the irreducible representations of

H; (S2,b) in positive characteristic, for all p, ¢, and c.

e In Chapter 7 we describe a particular basis of Verma modules for Hy .(S3,h) in positive
characteristic. The results in this chapter are used extensively in the rest of the thesis,

as we perform many calculations in that basis.
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In Chapter 8 we prove Theorem 2 and describe the irreducible representations of
H,; (S3,b) in characteristic 2, for all ¢ and c.

In Chapter 9 we prove Theorem 3 and describe the irreducible representations of
H; (S3,h) in characteristic 3, for all ¢ and c.

In Chapter 10 we explain how to reduce the space in which we need to look for singular

vectors, and compile useful identities to be used in later computations.

In Chapter 11 we prove Theorem 4 and describe the irreducible representations of

H (S3,b) in characteristic p > 3 for all ¢ and generic values of c.

In Chapter 12 we prove Theorem 5 and describe the irreducible representations of
H; (S3,h) in characteristic p > 3 for all ¢ special values of ¢. In particular when
T = triv,sign we take c¢ in the range p/2 < ¢ < 2p/3 to solve a previously unknown
case. For 7 = stand we take ¢ in the range 0 < ¢ < p/3 and calculate the irreducible
module, which also tells us the result in the range 2p/3 < ¢ < p. We conjecture the
result for ¢ in the range p/3 < ¢ < 2p/3.

Appendix A contains [Magma] code we wrote in order to compute examples and gain

insight on the problem in general.
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Chapter 1

Preliminaries

1.1 Reflection groups

In order to construct a rational Cherednik algebra, we must choose a finite reflection group.
Reflections are invertible linear maps which fix hyperplanes, and reflection groups are groups
generated by such maps.

Let b be a finite-dimensional vector space over an algebraically closed field k.

Definition 1.1.1. A hyperplane in § is a subspace of h with dimension dim § — 1.

Equivalently we say that hyperplanes have codimension 1. Let GL(h) be the group of
invertible linear endomorphisms on h and for ¢ € GL(h) denote by g.y the action of g
on y € h as a k[GL(h)]-module. Let Fixy(g) = {y € b | g.y = y} be the subspace of h

consisting of elements which are unchanged by the action of g.
Definition 1.1.2. A reflection is an element s € GL(h) such that dim Fixy(s) = dim b — 1.

In other words, s € GL(b) is a reflection if it fixes a hyperplane in . If g € GL(h) then we

have
y € Fixy(g) <= gy=y <= y—gy=(1-9).y=0 < y € kery(l — g)
which shows that Fixy(g) = kery(1 — g). If additionally g is a reflection then
dim kerp(1 — g) = dim b — 1.

By the rank-nullity theorem, when g is a reflection we get dim imy(1 — g) = 1. Therefore
s € GL(h) is a reflection if and only if ranky(1 — s) = 1.

Example 1.1.3. Let h = R? with the standard basis y; = [}] and y» = [{], and consider the

invertible linear transformation s € GL(H) defined on the basis by s.y; = y2 and s.y2 = y;.

1
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This linear transformation can be written as a matrix s = [9}] with respect to the basis

{y1,y2} of h. Since (1 —s) = [_11 711] is a matrix of rank 1, s is a reflection. This example is
illustrated in Figure 1.1.A.

RQ W . R2 .

AY
D
AY

Figure 1.1.A: Diagram of a real reflection from Example 1.1.3. Points along the dashed line are fixed
by s and the rest of the plane is reflected across that axis.

Example 1.1.4. Let h = C" and let £ € C be an m*" root of unity for some positive integers

n,m € Z~g and £ # 1. Consider the n x n diagonal matrix

¢ 1
S =
1

as an element of GL(h). The matrix

1=¢

1-s= 0
0

has rank 1, therefore s is a reflection on b.
Example 1.1.5. Let h = k? and consider the matrix s = [ {1 | € GL(h). The matrix

1—s= [ 8 *01 ] has rank 1, therefore s is a reflection on §. It in important to note that

s™ =[ 3™ ] therefore s has infinite order when k has characteristic 0.

Definition 1.1.6. A finite group G < GL(b) is a finite reflection group if the set
S ={s|s € G is areflection}

of reflections in G generates the group.
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Since some reflections have infinite order, it is necessary when considering finite reflection
groups to ensure we restrict our attention to reflections of finite order. The reflection in

Example 1.1.5 belongs to a finite reflection group only if the characteristic of k is positive.

Let G < GL(h) be a finite reflection group so that h has the structure of a k[G]-module.
We call b a reflection representation of G. We will now consider the dual representation of h
and we will see that reflections on § coincide with reflections on the dual space.

Let h* be the dual space of h and denote by (-, -) the canonical pairing h* ® h — k. For any
g € G and = € h* the dual space has the structure of a k[G]-module (the dual representation)
with the action g.x defined by (g.z,y) = (z,g .y) for every y € b.

Proposition 1.1.7. For every reflection s € G there exists a unique element as @) € h*®h
such that

s.x =1z — {r, o)) sy=y+

for every x € b* and y € h.

Proof. Let s € G. First suppose that s acts as a reflection on the dual representation and
therefore fixes a hyperplane of h*. Since dim imy«(1 — s) = 1 we may choose any nonzero
vector in imy«(1 — s) to be a basis.

If we choose a basis o, of imy«(1 — s) then for any x € h* we can write (1 — s).z as a scalar
multiple of . Let o) : h* — k be the map satisfying (1 — s).z = o (z)as for all = € b.
The map « is a linear functional on h* and can therefore be thought of as an element of b.
Note that a depends on the choice of as and a different choice of a basis oy would satisfy
a5 = Aoy for some nonzero constant A € k with the corresponding o’ = A taY. However,
the tensor as ® a;/ does not depend on this choice because ag ® a;v =as® a;/. Therefore
as ® a) € h* @b is uniquely determined and satisfies (1 — s).xz = (z, o)), for every x € b.

We can rearrange this formula to obtain
sar =1z — (T, )ag

for all z € b, where a; and o are both nonzero.

We can now substitute x = as and yield
s.as = g — (g, ) Yas = (1 — (s, ) ))as

which shows that ay is an eigenvector of s with eigenvalue 1 — (g, ). Since s is invertible
we can conclude that the eigenvalue 1 — (as, oY) is nonzero, and that the value of s~! on aj

is given by the reciprocal
(s Vs = ;a
Tl —{ag,aY) 7
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We may now calculate the action of s~! on z € bh*.

s =x— (1,0, <= = (51— (x,a)) (5.

—= (s Ha=z+ (r,a))(s™).as

Using this formula and the definition of the dual representation, we can calculate the action

of s on y € b in terms of a; and o as follows.

<JZ, S‘y> - <(871).$, y>
s, )

.
i+ e )
— (a0} + (o)) s e 1)

{as,y)
1- <a87 as\/>

s

:<x’y+ (as, y) av>

1—(as,af) °

= (2, y) + (&, a)

This holds for all € h* and therefore

s.y=y+ <a57y> \%

1—Aag,af) °

for any y € h. We can see that for any y € b the image (1 — s).y is spanned by « therefore
ranky (1 —s) =1 and s € G is a reflection on b.

Finally, noting that (h*)* = b as a representation we can conclude that s € G acts as a

reflection on b if and only if it acts as a reflection on h*. O

For a reflection s € GL(bh) there is a relation between the hyperplane Fixy(s) and the

element a5 € h* as seen by the following.

Fixp (s {yeh\y—sy}
Z{yef) | ymytr—Co¥ >asv}

1 —(as,ay

_ {yeh P —) >ag}

1 — (o, af

Both o and 1 — (g, ) are nonzero, therefore

S

(s, y)

— 22 Y =0 ker (s
T (as,ozv) < y € ker(ay)

and so Fixy(s) = ker(a;). Similarly, it can be shown that Fixy-(s) = ker(a).

4
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Example 1.1.8. Let h = R3 with standard basis {yl = [é} , Y2 = [g] , Yz = [ﬂ} The
dual space h* has dual basis {z1 =[100], 29 =[010], z3 =[001]}. Let s € GL(h) be the
invertible linear transformation given by its action on the basis s.y; = —y1, s.y2 = y2 and

s.ys = y3. As a matrix, s can be written as

-1 0 0
[s]p = 0 1 0
0 0 1
with respect to the basis {y1,y2,y3} of h. Since
0 O
1—sly= 0 0
0 0 0

2 is the identity matrix so s is a reflection

has rank 1, s is a reflection. The matrix [s]y
of finite order and the group G generated by s is a finite reflection group. The subspace
Fixp(s) = kery(1 — s) is spanned by {y2,y3}, which is a hyperplane in R3, and imy(1 — s) is

spanned by y;. The action of s on the dual representation h* is given by the matrix

-1 0 0
[S]h* = 0 1 0
0 0 1

with respect to the dual basis {z1, z2, x3} of b*. Furthermore

[1—8]h* = 0 0
0

so imy« (1—s) is spanned by {1} and we can choose a basis oy = 1. Since a; is an eigenvector
of s with eigenvalue 1 — (as, ), we compute s.as = s.r1 = —x1 = —a. The eigenvalue is
1—(as,af) = -1 = (as,«)) = 2. Substituting our value of as = z1 we get (z1,a)) = 2,
hence oy = 2y; € imy (1 — s). Therefore s ® a) =21 ® y;. We could have made a different
choice for the basis of imy«(1 — s), say as = 2z1. However the eigenvalue is still —1 and
so (as, &\gv> =2 = (le,agv) = 2, hence a,’ = y; € imy(1 — s). Once more, we get
Qs Q0 =201 QY1 = 0 ® o illustrating that this choice is determined only up to mutual

scaling. The formula for the action of s on x = [abc] € h* is

sax=x—2(x,y1)x1 = [abe] —2[a00] =[-abc]
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and for y = [zﬂ € bh we get

s =y — 2z, Yy = [:ﬂ -2 [ﬁ] - [

This example is illustrated in Figure 1.1.B.

R3 R3
Y3 Y3

Y1

Figure 1.1.B: Diagram of a real reflection in R? from Example 1.1.8. The shaded area represents the
hyperplane Fixy(s) = ker(1 — s) = span{ys, y3} = ker(x1).

Example 1.1.9. Let & be a primitive m!"?

root of unity, for some positive integer m. Let
h = C3 with basis {y1,y2,y3} and let b* be the dual space with dual basis {x1,z2,23}.

Consider the element

& 0
[s]p = 0 1 0
0 0 1

in GL(h) written as a matrix with respect to the basis {y1,y2,y3} of h. The eigenvalues of
s are readily seen from this diagonal matrix; there are 2 = dimf — 1 eigenvalues of 1, and
an eigenvalue & not equal to 1. This implies that there is a 2-dimensional subspace of h on

which s acts as the identity. Indeed, the matrix

1-¢ 0 0
[1_S]h: 0 0 0
0 0 0

has rank 1, so s is a reflection and must therefore fix a hyperplane. Asin Example 1.1.8, s has
finite order so the group G generated by s is a finite reflection group, which is cyclic of order m.
Since kery(1— s) is spanned by {y2, y3}, and ker(as) = kery(1—s), choose as = x1. Now ) is

a basis for imp(1—s) so ay must be a multiple of y;. The eigenvalue ¢ satisfies £ = 1— (s, )

6
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which we rearrange to give {(as, ) = 1 —&. Therefore (z1,a)) =1-¢ = af = (1 -8y,
and as @ a) = (1 —&)z1 ®@y1. Forx =[abec] € h* and y = [:ﬂ € b the action of s is given
by the formulas

saw=x— (1= (x,y1)r1 =[abec] — (1 =&)[a00] =[abc]

and
u
v

sy=y+ (€~ Diev gy = [}

| I
_|_
—
M
AN
|
—_
S—
r
oo
| IE—
Il
rm
Iy
ge |
IS
—_

Example 1.1.10. Let the characteristic of k be p > 0. Let h = k® with basis {y1,y2, y3}

and let h* be the dual space with dual basis {x1, z2,z3}. Consider the element

1 1 0
[s]ly = 0O 1 0
0 0 1

in GL(h) written as a matrix with respect to the basis {y1,y2,y3} of h. This matrix has two

eigenvalues which are 1, and a generalised eigenvalue which is also 1. Since

0o -1 0
[1—8]{7 = 0 0 0
0 0 0

1 m 0
s = 0 1 0
0 0 1

therefore sP is the identity matrix so s has finite order, and the group generated by s is a finite
reflection group. A reflection of this kind which is not diagonalisable is called a transvection.
Finite reflection groups containing transvections occur only when the characteristic of k is
positive, because if k had characteristic 0 then the group generated by s would not be finite.
Since imy(1 — s) is spanned by {y; }, we know that oy must be a multiple of y;. Furthermore,
kery(1 — s) is spanned by {y1,y3} and ker(as) = kery(1 — s) therefore we choose oy = 5.

The action of s on ys is given by

-~ (x2,92) v
$:Y2 = Y2+ T <x2,a¥>as =Yt Y2,
therefore
1 Vv
704 fry
1~ (way) = "
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which is satisfied by Y = y1, hence a;®@ay = z2®y;. Note that in this instance (as, o)) = 0.
We can deduce that

kerp-(1 —s) = ker(asv) = ker(y1) = span{zg, z3}

and

lm‘]*(l - 8) = Span{as} = Span{xg}.

Given x = [abc] € h* and y = [Zﬂ € b, the formulas for the action of s are given by
ST =T — <£L’,y1>$2 = [abc] — [OaO} = [a b—a c]

and

=+ 2l - [ [§] - 1)

These are the 3 main types of examples of reflections. Real reflections are elements of
order 2 with an eigenvalue of —1, and they match our intuition for the meaning of reflection.
Complex reflections have finite order and an eigenvalue which is a root of unity not equal
to one. Transvections are reflections which are non-diagonalisable, they are unique to finite

reflection groups in the case of positive characteristic.

1.2 Representation theory of S, and S;

Representations of rational Cherednik algebras can be induced from representations of finite
reflection groups. The representation theory of the finite reflection group associated with
a Cherednik algebra therefore informs the representation theory of the Cherednik algebra.
Furthermore, irreducible representations of a rational Cherednik algebra are parametrised by
irreducible representations of its associated reflection group.
Representations of S;, are labelled by partitions of n and we can use Young diagrams to
represent the partitions. In this section, we will describe the representation theory of the
symmetric groups Se and S5 in any characteristic and fix some notation. Most importantly
we will outline which representations are irreducible in positive characteristics. For more
detail on the results of this chapter, see Chapter 10 of [Wel6].

We will first consider the representation theory of S3. What follows are the Young

diagrams for the partitions of 2.

@ [ s
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The partition (2) corresponds to triv, the trivial representation of Sy with the basis {1¢riv}
and group action given by g.1ltriv = lyriy for all g € Sy. The partition (1,1) labels sign, the

sign representation of Sy with basis {lsign} and group action given by

lsign g is an even permutation in S
g-lsign = . . .
—lsign g is an odd permutation in Sp

for all g € S5. The characters of these irreducible representations in characteristic 0 are

shown in the following character table.

1 (12)

triv 1 1

sign 1 -1

For a finite group G, let G denote the set of irreducible representations of G over k. In

characteristic 0, we have S = {triv,sign}.

To detail the representation theory of symmetric groups in positive characteristic, we

require the following definition.

Definition 1.2.1. Let p be a prime number. An element of a group is p-regular if its order

is not a multiple of p.

To obtain the character table of S2 in characteristic p we keep only the columns representing
conjugacy classes of p-regular elements. The result is called the Brauer character table.
Brauer characters carry slightly less information than ordinary characters because, in finite
characteristic, representations which are not isomorphic may have identical Brauer characters.
Transpositions have order 2, therefore they are not 2-regular elements of Sy. By removing the
column of transpositions from the ordinary character table, we obtain the Brauer character

table in characteristic 2 as shown.

(1) ()

triv 1
sign 1 1

In characteristic 2, since —1 = 1 we can deduce that triv and sign have identical Sy actions
and as a consequence their Brauer characters match. Hence in characteristic 2, there is only

one irreducible representation and we have Sy = {triv}.



Chapter 1. Preliminaries

In any characteristic p > 2, the elements of S are all p-regular therefore the Brauer character
table looks the same as it does in characteristic 0 and g; = {triv,sign}. Additionally, the
category of finite-dimensional representations of S in characteristic p > 2 is semisimple, as

it is in characteristic 0.

We will now consider the representation theory of S3. The partitions of 3 have Young

diagrams
@[] @y L] (LD

which label trivial, standard, and sign representations of S3. The representations triv and
sign are defined similarly as they were for Sy. The partition (3) labels the representation
triv which has a basis {1¢riv} and the group action is given by g.1¢riv = liriy for all g € Ss.
The partition (1,1,1) labels the representation sign of which has a basis {lsign} and the

group action is given by

lsign g is an even permutation in S
g-lsign =
—lsign g is an odd permutation in S3

for all g € S3. To define stand, first let V' be the permutation representation of S3 with basis
{1, 42,93} and the group action given by g.y; = y,(;) for all g € S3. Now stand is defined as

the subrepresentation
{a1y1 + agys + azys € V | a1 + ag + a3 = 0}

of V. For more information about this representation see Chapter 3. The characters of these

representations are shown in the following ordinary character table.

(1) (12) (123)

triv 1 1 1
sign 1 -1 1

stand 2 0 -1

and we have S3 = {triv, sign,stand} in characteristic 0.

To obtain the Brauer character table of S3 in characteristic 2, we keep the column of 3-

cycles which are 2-regular and remove the column of transpositions which are not 2-regular.

10
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(1) (2) (123)

triv 1 1 1

sign 1 -1l 1

In a similar way to what we saw for Sy, the representations triv and sign are the same
representation of S3 in characteristic 2 and therefore have the same Brauer characters. Also,
the representation stand remains irreducible in characteristic 2 (for proof, see Lemma 3.1.4).
Hence So = {triv, stand} in characteristic 2.

Next we consider characteristic 3. In S5 the 3-cycles have order 3, so the 3-cycles are
not 3-regular. However transpositions have order 2 and therefore are 3-regular in S3. The

following is the Brauer character table of S3 in characteristic 3.

1) (12) (123)

triv 1 1 1

sign 1 -1

stand 2 0 —1

Here we see that triv and sign have linearly independent characters and are both irreducible
because they are 1-dimensional. We also see that the Brauer character of stand is equal to
the sum of the Brauer characters of triv and sign. This happens because there is a short

exact sequence of S3 representations
0 — triv — stand — sign — 0

which shows that in characteristic 3, stand is not irreducible. The copy of triv inside stand
is spanned by the vector y; + y2 + y3, whose coefficients sum to zero in characteristic 3.
Therefore we have S5 = {triv,sign} in characteristic 3.

Elements of S3 have order 1, 2, or 3. Therefore in all other characteristics besides 2 and
3 the Brauer character table is identical to the ordinary character table, and the category of
finite-dimensional representations is semisimple. Therefore in characteristic p > 3 we have

Sy = {triv,sign, stand}

11



Chapter 2

Rational Cherednik Algebras and

Representation Theory

2.1 Rational Cherednik algebras

In 1992, the double affine Hecke algebras were defined by Ivan Cherednik [Ch92] in order to
study quantum Knizhnik—Zamolodchikov equations. In 1995, Cherednik used double affine
Hecke algebras to prove the Macdonald constant term conjecture [Ch95].

In 2002, [EtGi02] Pavel Ilyich Etingof and Victor Ginzburg defined “certain ‘rational’ de-
generations of the double affine Hecke algebra introduced earlier by Cherednik.” Today, these
rational degenerations of double affine Hecke algebras are better known as Cherednik alge-
bras. The rational Cherednik algebras and their representation theory will be explored in
this chapter. We follow [BaCh13a] in our definitions, but overviews of this material are also
available in [Gol0, EtMall, Bel2].

Let k be an algebraically closed field. Let G be a finite reflection group over k with
reflection representation h and dual representation h*. Let S C G be the set of reflections in
G and choose a function ¢ : S — k, s — ¢(s) = ¢s with the conjugation invariant property
c(gsg™') = c(s) for all g € G and s € S. Denote by T(h ® b*) the tensor algebra of b & b*,

and fix a constant ¢ € k.

Definition 2.1.1. The rational Cherednik algebra H: (G, ) is the quotient of the associative
algebra k[G] x T'(h @ h*) by the relations

[QZ,SC/] =0, [y,y'] =0, [yvx] = <aj,y>t - Z CS<(1 - ‘9)'567 y>3
seS

for all z,2" € b* and y,y' € b.
Recall that for each s € S there is a unique element as ® ) € h* ® b as described in

12
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Proposition 1.1.7. The constant ((1 — s).z,y) can be written as

(1= s)z,y) = ((z,0))as,y) = (z,0]) {0 y)

and this equivalent form is used by some authors when defining the commutator [y, x]. Using

properties of the dual representation, we can also derive the equality

(1=s)z,y) = (x,(1—s")y)

which is useful in some calculations.
The rational Cherednik algebra is an associative infinite-dimensional algebra with a unit,

and is noncommutative for sensible choices of parameters G, b, t and c.

Proposition 2.1.2. For any A € k*, there is an isomorphism of algebras H;.(G,b) =
Hyixe(G, D).

Proof. The map ¢ : Hy (G, h) = Hyac(G,h), defined by ¢(z) = Az, ¢(y) = y, and ¢(g) = g
for x € h*, y € b, and g € G, is an isomorphism of algebras. O

In other words, rational Cherednik algebras are isomorphic up to simultaneous rescaling
of parameters ¢ and ¢ by a nonzero constant. For this reason we can restrict our attention to

just the cases of t = 0 and ¢ = 1 individually.

Let S(h) and S(h*) denote the symmetric algebras on h and h* respectively.

Theorem 2.1.3. There is an isomorphism of vector spaces
S(h*) @ k[G] ® S(b) = Hy (G, h)

given by multiplication.

This theorem is called the Poincaré-Birkhoff-Witt (PBW) theorem. It is analogous to a result
originally proved in the context of Lie algebras and it can be found in [EtGi02] for rational
Cherednik algebras in characteristic 0, and in [BaCh13a] for rational Cherednik algebras in

characteristic p.

If {y1,...,ym} is a basis for h and {z1,...,x,,} is a basis for h* then the PBW theorem
gives the following set as a basis for H; (G, b).

{arag - atrgol o | ait; =0, g€ G

By setting degree x = 1, degree g = 0, degree y = —1 for all x € h*, g € G, and y € h we
obtain a Z-grading on the algebra.

13
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2.2 Verma modules

The PBW theorem gives us a decomposition of the rational Cherednik algebra into three
tensor factors. That decomposition is similar in structure to factorisation of the universal
enveloping algebra arising from a triangular decomposition of a semisimple Lie algebra in
characteristic 0, for which Bernstein, Gelfand, and Gelfand defined a category O.

The similarity motivates a definition of category O for rational Cherednik algebras over fields
of characteristic 0, where the subalgebra k[G] takes the place of the Cartan subalgebra and
the subalgebras S(h*) and S(h) play the roles of positive and negative nilpotent subalgebras
([EtMall] Section 3.5). As a consequence we obtain the familiar notion of Verma modules,
which behave as standard objects in a highest-weight category with the expected properties.
In characteristic p it is more complicated, however by carefully choosing our definitions in
this setting we can replicate familiar ideas. For a detailed overview in characteristic 0, see
[GGORO3]. In characteristic p we follow the approach of [BaCh13a].

Let 7 € G be an irreducible representation of G over k and enrich its structure to a
k[G] x S(h)-module by allowing b to act on 7 by zero. Since k|G| x S(h) is a subalgebra of

H,.(G,bh) we can induce the representation 7 to a representation of the Cherednik algebra.

Definition 2.2.1. The Verma module corresponding to T is the induced H (G, h)-module

Ht,C(th)

M (G,b, 1) = Indy i insm 7

We will abbreviate notation to M, .(7) if it is clear which algebra we are working with.

From the definition, we have

Mt’c(T) - Ht,c(Ga h) ® T

k[G]xS(h)

as an Hy.(G,h)-module, with action given by left multiplication. We can apply the PBW

theorem to obtain an isomorphism of vector spaces,
Mo(1)=8S0H") @

The Verma module M; .(7) inherits a Z-grading from H;.(G,h) and by choosing that the
graded piece k ® 7 is in degree zero we obtain an Ny-grading on M; .(7) which corresponds
to the grading on S(h*) in S(h*) ® 7. We denote by Mffc(T) the graded piece of My .(7) with
degree d. The action of the rational Cherednik algebra H;.(G,bh) can be derived from the
definition of the Verma module M, .(7) with the following result. For any f®v € S(h*)® 7,

z.(fov) = (zf) @v,

14
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9-(f ®@v) = (g-f) ® (g-v),
v(fev) =, ev -3 el o

(6%
seS s

for all z € b*, y € h, g € G. Given any y € h and f, f' € S(h*) the partial derivative 9,
is characterised by the product rule d,(ff’) = 0y(f)f + fO,(f’) and defined in degree 1 by
Oy(x) = (x,y) for all z € h*. The differential-difference operators of the form

Dy=1t0,®1 —ch<as,y>@®s

«
ses s

corresponding to the action of y € h on the Verma module are known as Dunkl operators.
First defined in 1989 by Charles Francis Dunkl, the Dunkl operators are known to commute
([Du89], Theorem 1.9). Rational Cherednik algebras are therefore the algebras generated by
a reflection group algebra, a polynomial algebra, and Dunkl operators.

Verma modules are a family of infinite-dimensional representations with finite-dimensional
graded pieces. As usual, we can obtain simple modules from Verma modules by taking a
quotient. However, the quotient we consider is different to the one usually considered in

characteristic 0, as highlighted by the following proposition.

Proposition 2.2.2 ([BaChl13a], Corollary 2.21). Suppose the characteristic of k is positive.
The Verma module M .(T) has a unique mazimal proper graded submodule, denoted Jy.(T),
and the quotient Ly (1) = My o(7)/Ji () is an irreducible Hy (G, h)-module.

In characteristic 0, at ¢ = 1 all submodules of M; .(7) are graded and that adjective could
be omitted from the proposition without consequence. In characteristic p, however, for any
t there are submodules which are not graded and the sum of all proper submodules is the
whole Verma module. Therefore it is crucial in positive characteristic to consider only the

quotients of Verma modules by graded submodules.

Our aim is to describe the simple modules L;.(7) when the reflection group G is the
symmetric group Se or S3 in a field of positive characteristic p, as we vary the parameters t,

cand T.

2.3 The Casimir element

In the context of Lie algebras where Casimir elements were first defined, they are particular
elements in the centre of the universal enveloping alegbra. They are a useful tool in the
representation theory of Lie algebras because the action of Casimir elements can be used
to classify some representations and distinguish blocks. In this section, we will define the

Casimir element of a rational Cherednik algebra and detail some of its properties.
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Let {y1,...,ym} be a basis for h and let {x1,...,z,,} be a dual basis for h*.
Definition 2.3.1. The element
= inyi —1—263(1 —5)
i=1 seS
is called the Casimir element of Hy .(G,b).

The Casimir element consists of two sums, and the second of these sums commutes with

elements of the group as shown by the following proposition.
Proposition 2.3.2. The element ) g cs(1 — s) is central in k[G].

Proof. We can express this element as a difference of two sums,
ch(l —5) = ch - chs.
ses seS seS

The first sum

by conjugacy class. In any group algebra, the sum of all elements in the same conjugacy class

scg Cs 1 a constant, so it is central in k[G]. We can group the sum ) g css

forms a central element. Since the value of ¢, is fixed across each conjugacy class, the sum

Y scg CsS is a linear combination of central elements, and is therefore central. O

We will now prove some commutation relations involving the Casimir element. These
properties will be used later in this section to prove statements concerning the action of the

Casimir element on Verma modules.
Proposition 2.3.3. The Casimir element {2 satisfies the following:
1. [2,z] =tz
2. [0,z x4y - - ) = dtag zy, ... x5,
3. [2,y] = —ty
4o 192,90 Yo+ Yial = — Aty Yis -+ Yig
5. 192,9] =0
foralld e N, z,z;,...,xi; €b%, ¥, 9i,...,Yi, €h and all g € G.
Proof. We will first prove [{2, x] = tx. Let x € h* be arbitrary.

[2,2] = <§:xiyi+265(l—5)>z—x<§:ziyi+205(l —s))

=1 ses =1 ses

I

x;i[yi, x| + Z Cs (J:s - sx)

1 ses

(2

16
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I

s
Il
—

<<m it — Y es((1— s).x,yi>s) +) ez —sa)s

seES seS

m
:Z myzt—chz 1—5) a:y,xzs—Fch 1—5
= seS  i=1 seS
:xt—z (1—5 S—I—ch 1—3
seS seS

=tz

The second statement can be proved by induction on d using the previous part as the base
case, and the third and fourth statements are proved analogously.
Finally we show [£2,g] = 0. Let g € G be arbitrary.

9] = [ixzyz +) e(l- S),g]

i=1 seS
m

= [meyzg} + [263(1—8)79]
i=1 seS

By Proposition 2.3.2, the second commutator is zero, so we must show that g commutes with

the sum Y " | ;.

m m m
{Z iy, g] = ziyig— Y gy

=1 =1 =1
m m

= wiyig— Y _(g-2:)(9-v:)g
i=1 =1

= (oY waaton o

=1 =1

Therefore we are done if

> wiyi = Y (9-xi)(9-yi)

i=1 i=1
and this follows from the fact that h and h* are dual representations and the bases {y1, ..., ym}

and {z1,...,2,} are dual to each other. O

When t = 1, we have [2,z] = z, [£2,g9] = 0, and [2,y] = —y, for all z € h*, g € G and
y € bh. Therefore, in characteristic 0, {2 can be used to grade rational Cherednik algebras in
a way which matches the grading given at the end of Section 2.1. However, in characteristic

p we have [£2, zP] = pzP = 0 and therefore (2 only gives a grading modulo p.

We now consider the action of the Casimir element {2 on Verma modules, and deduce an

important property.

17
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Proposition 2.3.4. Let 7 be any irreducible representation of G and consider the Verma
module My (7). The Casimir element £2 acts on every element of degree zero in M () by

some constant 2|;.

Proof. Degree zero of the Verma module M; .(7) is just the irreducible representation 7, so

let v € 7 be arbitrary. The action of {2 on v is given by

N = (i iy + Y cs(1— s)> w

i=1 s€S
= (Zf:lxlyz)v—l- (;Cs(l - 5)>-U

The first term of the preceding expression is equal to zero, because all the y; € h act by zero
on 7 by definition of the Verma module. By Proposition 2.3.2 and Schur’s lemma, the sum
Y ses Cs(1 — s) is central in k[G] and therefore acts on the irreducible representation 7 as a

multiple of the identity, so by some constant 2|, € k. This constant can be calculated from

2= e (dimlT) S coxn(s).

SES seS

the character y, as

O]

Corollary 2.3.5. Suppose that t = 1. The Casimir element £2 acts on M{ () by (2| +d).

Proof. Consider an element of the form z;, - --x;, ® v, where each z;, € {z1,...,zn} is a
basis vector for h*, and v € 7. Such elements span the homogeneous component in Mf{ (7).

By Statement 2 of Proposition 2.3.3, the action of {2 on z;, - -- x;, ® v can be calculated as

Qg -2, @) = uyy - 23, QU
= (24 - 2 Q4 (2,2, - 2,]) Qv
=T X, Qv+ dry, o x, @U
= (27)xi, - xi, @v+day, -3, U
=2 +d)z, - xiy, @ 0.

This property of the Casimir is used in Lemma 8.4.8 and throughout Chapter 12.

2.4 Singular vectors

The concept of a singular vector arises in many areas of representation theory. We can

construct simple modules of rational Cherednik algebras by taking the quotient of a Verma

18
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module by its maximal proper graded submodule and we will see that singular vectors aid in
this task.

Definition 2.4.1. Let M be a Z-graded Hy (G, )-module with degrees bounded from below,
that is, there exists an minimum degree such that M = @dzl M? for some integer I. Let
d >l and let f € M¢ be a homogeneous element of degree strictly larger than the minimum.

If y.f = 0 for every y € b, then f is called a singular vector.

Singular vectors are simultaneously in the kernel of every Dunkl operator D, for all y € h. The
graded modules we consider are Verma modules and their quotients by graded submodules.
Since Verma modules have minimum degree 0, a singular vector of a Verma module must be

a homogeneous element with strictly positive degree.

Example 2.4.2. Suppose t = 0 and ¢ : S — k is defined by ¢(s) = 0 for all s € S. Let
us show that for any 7, the irreducible quotient of M o(7) is concentrated in degree 0, that
is Loo(r) = 7. When ¢t = 0 and ¢ = 0, the Dunkl operator D, is identically zero for any
y € b so every homogeneous vector with positive degree in My o(7) is singular. In particular,
everything in S%(h*) ® 7 with i > 1 is singular and Joo(7) = @, S'(h*) ® 7 is the proper
submodule consisting of everything above degree 0. This submodule is maximal because if it

were any larger it would be the whole module. Therefore
Loo(1) = Mo,o(7)/Jo,0(7)
~@si)er | @sh)er
i=0 i=1

=~ S @

So Loo(7) is isomorphic to 7 as a vector space. To consider how the rational Cherednik
algebra Hoo(G,bh) acts on Loo(7), let v € 7. For any g € G, the vector g.v is determined
by the representation 7. For any y € h, we have y.v = 0 by definition of the Verma module.
Finally for any x € h* we have z.v = 0, because degree(z.v) = degree(v) + 1 = 1 and we
took a quotient by everything with positive degree. Therefore Lgo(7) is a module for the
Cherednik alebra Hy o(G, h) which behaves just like the representation 7 with the usual action
of G, whilst h and h* act by zero.

We now consider general values for ¢ and ¢ once again. The next proposition shows us
that singular vectors generate proper graded submodules, which shows their importance in

finding the maximal proper graded submodule of a Verma module.
Proposition 2.4.3. Suppose f € M is a singular vector in some Z-graded H; (G, bh)-module
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with degrees bounded from below M = P, M4, The Hy.(G,b)-submodule generated by f is
a proper graded submodule of M.

Proof. Let f € M be a singular vector and consider the submodule generated by f under the
action of Hy (G, b).

Since f is homogeneous and H (G, h) has a graded action on graded modules, the submodule
generated by f is a graded submodule. This submodule is spanned by linear combinations
of the elements a.f for some a € Hy (G, h). By the PBW theorem, these can be written as

linear combinations of elements of the form

_ _ai..a2 am ., b1 bm,
a‘f_xl o™ Ty Yy "YU ‘f’

However, because f is singular we have y;.f = 0 for all j € {1,...,m}. Therefore the only
nonzero elements of the submodule generated by f are those which can be written as linear

combinations of elements of the form z{" ---z%mg.f. Now
degree(z{' - x8mg.f) = a1 + - -+ + an, + degree(f) > degree(f) > 1

because f is a singular vector so the degree of f is strictly larger than [. Hence the submodule

contains no elements of degree [ and must therefore be proper. ]

Let S(h*)§ denote the set of G-invariant elements of strictly positive degree in S(h*).

Proposition 2.4.4. Let the characteristic of k be arbitrary. For everyc, if f € S(b*)g then

[ ®w is singular in My (7) for any v € 7.

Proof. Let [ € S(h*)f be a G-invariant of positive degree in S(h)* and choose any v € 7.
The action of y € h on f ® v € My (7) is given by the Dunkl operator

1—s).
y(f ®@v)=— Z cs(as, y>M ® s

Qs

Since f is G-invariant, we have (1 — s).f = 0 for all s € S. Therefore for every ¢, we have
y.(f®@wv)=0forall y €b. O

Proposition 2.4.5. Let the characteristic of k be a prime p. For everyc, if f € S(f)*)f then

fP ®wv is singular in M (1) for any v € T.

Proof. Let [ € S(h*)f be a G-invariant of positive degree in S(h*) and choose any v € 7.
The action of y € h on fP ® v € My (7) is given by the Dunkl operator

(P ev) = 0,7 ©v -3 ealan ) L0 g

«
ses s
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Since f is G-invariant, we have

(1=8).f7 = (1= 5).f)") =0

for all s € S. Furthermore,
By (f7) = pfP~10,(f) =0
in characteristic p. Therefore for every ¢, we have y.(fP ® v) =0 for all y € b. O

Lemma 2.4.6. If f is a singular vector then g.f is a singular vector for all g € G.

Proof. Let y € b be arbitrary. Since f is singular, we have y.f = 0. For all g € G we have
g~ L.y € b, therefore

y-(9-f) =g.(g7"y).f =g.0=0.

Hence g.f is a singular vector for any g € G. O

Corollary 2.4.7. The singular vectors in each graded piece of a Hy.(G,h)-module form
a G subrepresentation. Hence if no graded piece of a Hyo(G,bh)-module has an irreducible
G subrepresentation consisting of singular vectors, then it has no singular vectors and s

irreducible.

2.5 Baby Verma modules

In characteristic 0, for almost all choices of the parameter ¢, the Verma module M .(7) is
irreducible. However this never happens when ¢t = 0 or in characteristic p, because invariants
of the reflection group, or their pt* powers, are central and thus lead to large submodules.
Since our goal is to obtain the simple quotient of a Verma module, it is often useful first to
consider the quotient by this large submodule.

At t = 0, the subalgebra S(h*){ is central in Hoo(G,h) so (S(h)§) Mo.(r) is a proper
submodule of My (7). This is in fact the submodule generated by singular vectors of the
form described in Proposition 2.4.4. The following definition can be found in [Go03] for

characteristic 0, and in [BaCh13a] for characteristic p.
Definition 2.5.1. The baby Verma module at t = 0 is the quotient

Mo (1)
(S(6)F) Mo.e(7)

Noo(T) =

of the Verma module My (7).

Suppose that k has positive characteristic p and consider the subalgebra (S’ (b*)f)p whose
elements are the pt* powers of elements in S(b*)ﬁ. At t = 1 the subalgebra (S(h*)g)p is
central in Hy (G, H) so (S(h)f)p M, () is a proper submodule of Mj (7). This submodule
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is generated by singular vectors of the form described in Proposition 2.4.5. The following

definition is unique to positive characteristic and can be found in [BaCh13a).
Definition 2.5.2. The baby Verma module at t = 1 is the quotient

MLC(T)
S(6%))" Mic(7)

NLC(T) = (

of the Verma module M (7).

In 1954, Geoffrey Colin Shephard and John Arthur Todd classified the complex reflection
groups and detailed the degrees of their fundamental invariants [ShTo54]. Moreover, the
Chevalley-Shephard—Todd theorem (Theorem 3.3.1) states that the invariants of reflection
groups generate a polynomial algebra of rank equal to the dimension of . This information

can be used to prove the following proposition.
Proposition 2.5.3 ([BaCh13a], Proposition 2.16). Baby Verma modules are finite-dimensional.
Corollary 2.5.4. The irreducible quotients Ly .(T) of Verma modules are finite-dimensional.

Proof. A baby Verma module is a quotient of Verma module by a proper graded submodule.
The quotient of the Verma module M, .(7) by its mazimal proper graded submodule is the
irreducible module Lt (7). Therefore the irreducible module L;.(7) is at least as small
as the baby Verma module Ny (7). By Proposition 2.5.3, baby Verma modules are finite-

dimensional, so it follows that the irreducible modules L .(7) are also finite-dimensional. []

Every singular vector in a Verma module generates a proper graded submodule and, in
some cases, the maximal proper graded submodule J; .(7) is generated by all these singular
vectors. In such cases, the maximal proper graded submodule is the sum of all proper graded
submodules of the Verma module. However this is not always the case, since it is possible
that the quotient of the Verma module by the submodule generated from all its singular
vectors is not irreducible. An iterative process is therefore required to calculate J; (7).

Let Jy denote the proper graded submodule generated by all of the singular vectors in
My (7). If My (7)/Jo is an irreducible module, then Jy = J; (7).

Otherwise, if the quotient M; (7)/Jp is not irreducible then denote by J; the proper graded
submodule generated by all singular vectors in My .(7)/Jy. Elements of the submodule J; are
singular because their images under all Dunkl operators fall within the submodule Jy. Since
Ji is a subset of My .(7)/Jy, we can lift it to My .(7) by considering its preimage Ji under the
quotient map My o(r) — My o(7)/Jo. Thus (Myc(7)/Jo) [y = Myo(r)/Ji. I Myo(r)/ ]y is
irreducible, then J; = Jt,e(T). Otherwise, M; .(T)/ J1 must still contain singular vectors which
contribute to the maximal proper graded submodule. For an example of this happening, see
Theorem 12.1.3 where we calculate a vector which is only singular modulo the quotient by

another singular vector of lower degree.
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This process will always terminate in finitely many steps because by first taking a quotient
to the baby Verma module, we already have something finite-dimensional. Since the dimen-
sion of a module decreases each time we take a proper quotient, there will only be finitely

many more times this procedure can continue before obtaining the irreducible module Ly (7).

2.6 Category O

Category O is a concept which first arose in the representation theory of semisimple complex
Lie algebras. Since its inception the idea has been applied in various other contexts. The
definition given here is quite different than we see elsewhere, but it is chosen to replicate the

same behaviour as any other category O.

Definition 2.6.1 ([BaChl3a]). Category O:.(G,H) in characteristic p is a category whose
objects are Z-graded finite-dimensional representations of the rational Cherednik algebra
H:.(G,h) over k, and the morphisms are homomorphisms of representations that preserve

grading up to uniform shift by a constant.

We will abbreviate notation as O;. when the algebra is clear from context. Unlike other
categories O, Verma modules are not objects in the category O, . because they are infinite-
dimensional. However, the baby Verma modules do belong in category O;.. The following

two theorems illustrate that this definition of category O . is well chosen.

Theorem 2.6.2 ([BaChl3a]). The irreducible quotient Ly .(T) of the Verma module M; .(T)
is in category O (G, b).

Proof. Verma modules are Z-graded and this grading descends to quotients by graded sub-
modules. Furthermore, we have seen in Corollary 2.5.4 that the irreducible modules Ly .(7)

are finite-dimensional. O

Theorem 2.6.3 ([BaChl3a]). Every simple object in the category O (G, b) is isomorphic
to the unique irreducible quotient Ly .(7) of a Verma module My .(T) for some irreducible

representation T € @,

The set G of irreducible representations of GG is in one-to-one correspondence with Verma
modules. Every simple object in Oy . is the unique simple quotient of some Verma module
and no two are isomorphic. Consequently, the simple objects of O; . are also in one-to-one
correspondence with irreducible representations 7 € G. We therefore have a strategy for
calculating all the simple objects in O .. We begin with some irreducible representation of
the reflection group, construct its corresponding Verma module, and then quotient by the
unique maximal proper graded submodule. By repeating this procedure for each irreducible

representation of the group, we obtain all the simple objects in O .. However, this does not
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tell us about extensions or blocks in the category which is a problem often in consideration.

For more detail, see the literature survey in Chapter 5.

Our goal is to describe every simple object in O, which can be done by giving their
characters or Hilbert polynomials, which we now define.

Let Rep(G) be the category of finite-dimensional representations of G and let Ky (Rep(G))
be its Grothendieck group. Let M = @,., M* be a Z-graded H; .(G,h)-module with finite-

dimensional graded pieces M®.

1€Z

Definition 2.6.4. For any Z-graded module M we denote by M[k] the same module but
with the grading shifted by k. That is, M*[k] = M*tF,

Since G has a degree-preserving action on the H; (G, h)-modules, we can consider each
graded piece M as a finite-dimensional representation of G. We use the notation [M?] to

represent the isomorphism class of M? in the Grothendieck group K (Rep(G)).

Definition 2.6.5. The character of M is the power series
xm(z) =) [M]
%
in formal variables z, 2! with coefficients in Ko(Rep(G)).

In other words, the character records how each graded piece M? of the graded module M

decomposes into finite-dimensional representations of G.

Example 2.6.6. Let 7 be an irreducible representation of G and consider the Verma module
M, o(1). The character of My (7) is

[e.e]

XMt,c(T)(Z) = Z[S’L(h*) & T]Zi.

i=0
Related to the character of a graded module is the idea of its Hilbert series.

Definition 2.6.7. The Hilbert series of M is the power series

Hilby(z) = Z(dim M) 7

(2

in formal variables z, 271

In a Hilbert series, the coefficient of z* records the dimension of M* as a finite-dimensional
vector space. If a Hilbert series has only finitely many nonzero terms and all the exponents

of z are non-negative then the Hilbert series is called the Hilbert polynomial.
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Example 2.6.8. The Hilbert series of the Verma module M, (1) = S(h*) ® 7 is

dim 7

HﬂbMt,c(T) (Z) = m .

For the next two examples, suppose that the fundamental invariants which generate the
algebra (S(h*)) have degrees di, . . ., d,, where m = dim b.

Example 2.6.9. The Hilbert polynomial of the baby Verma module Ny .(7) is

dim 7

HﬂbNoyc(T)(Z) = (1 — Zdl) . (1 — zdm)m .

Example 2.6.10. The Hilbert polynomial of the baby Verma module Nj .(7) is

dim 7

HileLc(T)(Z) — (1 _ zpd1) e (1 _ Zpdm) (1 — Z)m .

We now state Example 2.4.2 as a proposition using the language of characters and Hilbert

polynomials.

Proposition 2.6.11. Let k be an algebraically closed field of characteristic p, let the values
of the parameters be t = 0 and ¢ = 0, and let 7 be any irreducible representation of G. The
irreducible representation Lo o(7) of Hoo(G,b) is the quotient of the Verma module My o(T)
by all the positively graded vectors, with the character

XLoo(r)(2) = [T]

and the Hilbert polynomial
Hilbr, () (2) = dim 7.

Proof. When t = ¢ = 0, the Dunkl operators are all identically equal to 0, so all vectors
of strictly positive degree are singular. Thus, Lo o(7) is concentrated in degree 0, where it

equals 7. ]

Definition 2.6.12. Let S®)(h*) be defined as the quotient of S(h*) by the ideal generated
by {2P | z € h*}.

Proposition 2.6.13. Let k be an algebraically closed field of characteristic p, let the values
of the parameters be t =1 and ¢ = 0, and let T be any irreducible representation of G. The
irreducible representation L1o(7) of H1,0(G,b) is the quotient of the Verma module M o(T)
by all the vectors of the form xP Q@ v for any x € h* and v € 7. It has the character

XLl,o(T))(Z) = Xs(p)(h*)(z) - [7]
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and the Hilbert polynomial

1—=z2

1 4P dim b
Hilby,, o) (2) = ( : > dim 7.

Proof. This is well known, see also Theorem 3.1 in [Lil4]. When ¢ = 1 and ¢ = 0, the Dunkl
operators have a very simple form D, = 8, ® id. The joint kernel of such operators for all

y € b consists of vectors of the form 2P ® v for any x € h* and v € 7. O

2.7 Generic parameters

The parameter ¢ : S — k is a function comprising a choice of constants cy,...,c; € k, with
one constant for each conjugacy class of reflections. Since this parameter ¢ appears in the
definition of a Dunkl operator, singular vectors and their behaviour depend therefore on the
choice of ¢. When one choice of this parameter gives rise to the same behaviour of singular
vectors as infinitely many other parameters, then this choice for the parameter is described
as generic. Generic behaviour happens outside of countably many (in positive characteristic,
finitely many) values [BEG03a].

Since singular vectors are homogeneous elements of graded modules, we can compute
them by considering each graded degree in turn. In each degree, we can pick a basis for
the graded module so that the Dunkl operators D,,,...,D,, acting in that degree may be
written as matrices. Taking the kernels of these matrices and considering their intersection,
we obtain all the singular vectors in that degree of the module.

The ranks of these matrices depend polynomially on ¢y, ..., ct. To see this, consider the
matrices in row echelon form; the entries along the leading diagonal consist of polynomials
in ¢1,...,c;. Those polynomials and their roots determine a finite union of hyperplanes in
the function space whose points are different choices of the parameter c¢. Every value of ¢
chosen outside this finite union of hyperplanes leaves the ranks of the matrices unchanged,
and such a choice of ¢ is called generic. For a fixed irreducible representation 7 € @, the
simple H; (G, h)-module L .(7) at every generic value of ¢ has the same character and Hilbert
polynomial.

When c takes its value inside the finite union of hyperplanes described above, then some
of the values among c1,...,c; are roots of polynomials along the leading diagonal of some
row echelon matrix. In this case, the rank of some matrices will be reduced. If for each 7 € G ,
the character and Hilbert series of the simple module L;.(7) at this value of ¢ is equal to
the character and Hilbert series of L;.(7) at generic values of ¢, then this value of ¢ is also
generic as the behaviour is unchanged.

However, by reducing the ranks of the matrices, it is possible that this choice of ¢ will

increase the intersection of their kernels and produce additional singular vectors. In such
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cases, the parameter c is called non-generic and the simple module L .(7) will have a different
character and a strictly smaller Hilbert series than the simple module at generic values of c.

We also refer to non-generic values of ¢ as special.

2.8 Twist by a character

In this section we describe a correspondence which occurs between the simple objects in
the categories O for two rational Cherednik algebras which are related by a twist. Simple
objects in a category O are parametrised by irreducible representations. When different ir-
reducible representations are related through the tensor product with a linear character, we
can learn about one simple object by considering instead the corresponding simple object for

the twisted algebra.

Let x be any linear character (1-dimensional representation) of G over k with its basis
vector labelled 1,. Given g € G, the linear map x(g) acts on 1, by a constant and we identify
x(g) with this constant.

Consider the rational Cherednik algebra Hy (G, b) with xc : S — k defined by s — x(s)c(s).

Proposition 2.8.1. The map ¢ : Hy .(G,H) = Hy (G, b) defined by

forallxz € b*, y e b, and g € G, is a graded isomorphism of rational Cherednik algebras.

Proof. We will show that the map @ defines an injective and surjective homomorphism of
algebras.

To show that & defines a homomorphism, let us check that the defining relations in the
algebras are preserved under this map. First, @ defines an endomorphism of k[G] x T'(h @ h*).
The relations which define H; (G, h) as a quotient of k|G| x T'(h & h*) are

0=uz2' —2'z,

0=yy' —y'y,
0=xy —yx — <.SC, y>t + Z<a87 y> <SC, O[;/>C(S)S7
seS
and the relations defining Hy ,.(G,b) are

0=zx' — 2z,

0=yy —y'y,

0=ay—yx— (z,0)t+ Y _{osy){x,a))x(s)c(s)s

sES
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for all z,2" € b*, y,y' € h. We have
P(xz’ — 2'x) = O(x)®(2)) — P(2")(2) = 2’ — 2’z =0

therefore the map @ preserves this relation. By this same argument, the second relation is

similarly preserved by &. Finally,

@ (ay -y — @ y)t+ Y (), al)e(s)s)

SES
= &(2)P(y) — D(y)D(x) — (w,y)t + > (s y){z, 0 )e(s)P(s)
seS
=zy —yr — (@)t + Y _{asy)(x,o))e(s)x(s)s
sES

=0

which shows the third defining relation is preserved.
Injectivity and surjectivity are easy to see, because @ maps a basis of the domain to a basis

of the codomain. We can even construct an inverse map ¢! with @~ 1(z) =z, &71(y) = y

and &7'(g) = x"'(9)g-
This shows that @ is an injective, surjective homomorphism of rational Cherednik algebras,
therefore Hy (G, b) is isomorphic to Hy (G, b). O

Since @ defines an isomorphism from H;.(G,h) to Hy,(G,b), given any H;,.(G,b)-
module M, there is a Hy (G, h)-module &*(M) called the pullback along .

Proposition 2.8.2. Let @ be defined as in Proposition 2.8.1. The pullback module @* (Ly (7))
is isomorphic to Ly .(x ® 7).

Proof. Let M .(T) be a Verma module for Hy,.(G,h). We will first show that the pull-
back module ®*(M; (7)) is isomorphic to M;.(x ® 7) as a representation of H;.(G,b).

Considering only their underlying structure as vector spaces, we have
D" (Mixe(7)) = Myye(T) = SH* @ 7

and
Mi(x@7)=S5(0h") @ (x@7).

The linear map 7 — x ® 7 defined by v — 1, ® v is an isomorphism of vector spaces, so it
follows that

ShHer=50H") @ (x®T)
as vector spaces. Therefore we have an isomorphism of vector spaces
v P* (Mt,XC(T)) AN M(x®T)
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given by
U(fouv)=Ffol, .

We will prove that ¥ is an isomorphism of H;.(G,bh)-modules by showing that the map

commutes with the action of the algebra,

U (ax(f ®v)) =al(f @)

for all a € Hyo(G,h) and all f ® v € S(h*) ® 7. In this equation, the action of a € Hy (G, )
on the left hand side is defined through the pullback along @,

ax(f ®v) = D(a).(f @v).

It is enough to show that the action commutes for a = x, a = y, and a = ¢ for any = € bh*,

y € h and g € G because such elements generate H; (G, h). Considering the action of z,

¥ (P(z).(f @)
(e-(f @)
((zf) ®v)
=(zf)®1l,®v
:a:.(f®1x®v) =z.¥(f®v)

V(2% (f ®v))

'4
'4

which shows the action of x commutes with ¥. Similarly,

@*f®v)=w@ v))
- steiro
:lI/( Oy(f) ®’U—ZX ){as,y >(1_as)'f®s.v)
seS s
=0,(f) @ L ®v— Y x(s)e(s){as, >(1_as)'f®1x®s.v

seS s

:3y(f)®1x®v—Zc(s)<as,y>M®s.1x®s.v
seS s

=0, e (o0 - Y cann =2 6 (0, 80)

seES
= y(f ® (1, ® v))
= y.LZ/(f ® v).

Finally,

T (g (f @) =¥ (P(g)-(f @ v))
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(X f®v)

(x(9)(g-f) @ (9-v))

(9 )(9 f) ® 1y ® (g9.v)
fox(gl®gv
=g9.f®g.1,®g.wv
=g9.(f®1y®v)=g¥(f®v).

4
"4
x\g
9.

Hence the map ¥ commutes with the action of each a € H; (G, bh) where a is a generator
of the algebra. Therefore ¥ an isomorphism of H; (G, h)-modules, and the pullback module
D* (M (7)) is isomorphic to M .(x @ 7). This gives a correspondence between the Verma
module M; .(7) in the category O (G, h) and the Verma module M; .(x®7) in the category
O4t¢(G,h). The irreducible quotients by the maximal proper graded submodules, L; .(x ® 7)

and @*(L¢ (7)), are consequently isomorphic. O

Corollary 2.8.3. The characters of Ly .(x @ T) and Ly y.(7) are related by the formula

XLt,C(X®T)(Z) = XLt,XC(T)(Z> ’ [X]

Corollary 2.8.4. The Hilbert series of Lyc(x ® T) and Ly .(T) are related by the formula

HilbLt,c(X(X)T) (Z) = HilbLt‘Xc(fr) (Z)
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Chapter 3

The Symmetric Group and Its

Invariants

In this chapter we will consider the symmetric group and its reflection representations. The
symmetric group is a reflection group but in order to construct its rational Cherednik algebra
we must specify which reflection representation we are using. We will also describe the theory
of symmetric polynomials, because an understanding of the reflection group invariants is

required in order to construct baby Verma modules.

3.1 The permutation representation

Let n be a natural number. We denote by S,, the symmetric group with n! elements which
acts on the set {1,...,n}. The transposition swapping i and j is written (¢, ) or (ij).

Let V be the permutation representation of S, with basis {y1, ...,y } over k on which S,, acts
by permuting the basis. The element Y = y;+---+y, € V is a basis for the subrepresentation

kY =span{y1 +---+yn} CV

of V on which S, acts trivially, thus kY = triv € S‘\R The subrepresentation

h:{iaiyiEV iai:O}CV
=1 =1

of V has a basis given by {y1 — Y 42 — Yns s Yno1 — Yo} and {gi—y; | i # j}is a
spanning set. This subrepresentation is also known as the standard representation which we

shall usually denote by stand. The only exception is when n = 2, when we have h = sign.
The permutation representation V is a reflection representation of S, with the set of
reflections S = {(ij) | 1 <i < j < n} comprising all transpositions. For all (n,p) # (2,2) the

standard representation h of S, over a field of characteristic p is also a reflection representation
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with the same generating set S of reflections. When (n,p) = (2,2), there are no reflections
in Sy because h = triv in this case, so the group action is not faithful and S, fixes all of
b rather than any hyperplanes of h. In Proposition 1.1.7, we showed that V (respectively
h) is a reflection representation of S,, if and only if V* (respectively h*) is also a reflection

representation of S,,. We explore the structure of these dual representations in Section 3.2.
Lemma 3.1.1. V has exactly two proper subrepresentations, kY and §.

Proof. Suppose W <V is a subrepresentation, and W # 0. For any nonzero w € W we write
w = Z?:l a;1y; for some coefficients a; € k not all zero. Let [ be the number of coefficients a;

which are nonzero and choose a nonzero w € W with the minimum value of {.

Case 1l [ =1.
We write w = a;y; for some i € {1,...,n} and a; € k nonzero. Therefore y; € W and
(tj).yi =y; € Wforall j € {1,...,n}\ {i}. Hence W =V because W contains a basis
for V.

Case 2 | = 2.

We write w = a;y; + a;y; for some 4,5 € {1,...,n} with a;,a; # 0 and i # j. Now
(tj)w = ajy; + a;y; € W. We can multiply this by the nonzero scalar Z—JZ to get

2 2 242
Zf,yi + ajy; € W. Subtracting this from w gives a;y; — Z—Jzyz = | = aj) yi € W. By

a;

assumption every nonzero element of W has at least 2 nonzero coeflicients. Therefore

2 2
since <’aj) y; is an element of W with only 1 coefficient, it must be zero. Hence

2_ .2
a;—a;j

= 0 which implies a? = ajz.

a;

Case 2.1 aj = —a;. Therefore a%w =y; —y; € W. Through the action of S, on this
element of W we can obtain every element in the basis of §, hence h < W. The
dimension of h is n — 1 therefore W has dimension n — 1 or n; however W cannot
have dimension n because then W = V which implies W contains elements with
I < 2. Hence W = 1.

Case 2.2 aj = a;. Therefore a%w =y +y; €W.

Suppose n = 2, so w = y1 + y2 and spang{y1 + y2} = kY < W. The dimension of
kY is 1, and W has greater or equal dimension so it is dimension 1 or 2. However,
if the dimension of W is 2 then W = V which is a contradiction because V' contains
elements with [ < 2. Hence W = kY when n = 2.

If n > 2 then choose k € {1,...n} with k # 4,j. Now (ik).(yi +v;) = yp+y; € W.
Subtracting w gives v, —y; € W, and (ijk).(yx — vi) = yi —y; € W. Therefore
(vi +yj) — (yi —y;) = 2y; € W. If the characteristic of k is 2 then Case 2.2 is
equivalent to Case 2.1 so W = h and we are done. However if the characteristic is
not 2, then y; € W is nonzero and this is a contradiction because we have found
an element of W with [ < 2.
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Case 3 [ > 3.
We can write w = a1y1 +- - - +ayy; where a1, ..., a; # 0 using the action of S,, to reorder
the coefficients without loss of generality.
Suppose 34,5 € {1,...,l} with a; # a;. Without loss of generality, j =l and i =1—1

S0 a;_1 # a;. Now

1-2 2 2
aj aj I ]
w——— (=1, 1) .w= ak—ak>yk+ —— | y_1 € W.
ar—1 ( ) Z < aj—1 Q

=1 -1

This expression has fewer coefficients than w and must therefore equal 0, however

R I RER

aj—1 aj—1

and this is a contradiction as both a; # 0 and (a;—1 —a;) #0 forall k € {1...,1—2}.

Therefore we do not have any ,j € {1,...,1} with a; # a;,s0 a1 =ax = --- = q.

Hence a—llw =y1+---+y € W. If | = n, then span {y1 +- - -+y,} < W. By assumption
no element of W can be written with fewer than n nonzero coefficients so W = kY.

Suppose [ < n, soy; +---+y; € W. We have

(it +m) =+ 4+ +y) =y~ €W

which is an element of W with only 2 nonzero coefficients, which contradicts the choice
of w. O

The permutation representation V is an n-dimensional representation and contains sub-
representations of dimensions 1 and (n—1). The following lemma tells us when V' decomposes

as a direct sum of these two subrepresentations.

Lemma 3.1.2. There is a direct sum decomposition V. = b & kY if and only if p 1 n.
Moreover, if p | n then kY C b.

Proof. If p | n, then the nonzero vector Y = y; + - - - + y,, has coefficients which sum to zero,
and therefore Y lies in the intersection h N kY so the sum is not direct. Furthermore, any
multiple of Y also has coefficients which sum to zero, therefore kY C bh.

Suppose p t n, we claim h NkY = {0}. Let v € (hNkY) and suppose for the sake of

contradiction that v = 3" | a;y; is nonzero. Therefore v € kY so we have
v=AY =Ay1 + -+ \yn

for some nonzero A € k. However since v € ) we have > " ; a; = 0 =n\ and p { n so we can

multiply by n~! to get A = 0 which is a contradiction. Hence the sum is direct, and h & kY
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is a subspace of V with dimension
dim h+dimkY =n—14+1=n=dim V

sohpkY =V. ]
Lemma 3.1.3. When n = 2 the standard representation by is always irreducible.

Proof. The dimension of h is
n—1=2-1=1

and therefore b is an irreducible representation of Sy in any characteristic.

In particular, when p = 2 we have h =2 triv and when p > 3 we have h =2 sign. O

Lemma 3.1.4. Suppose n > 3. The standard representation by is irreducible if and only if
pin.

Proof. If p | n, then Y € b therefore kY C h and this inclusion is proper therefore b is not
irreducible.

Suppose p 1 n. Any proper subrepresentation of h would also be a proper subrepresentation
of V. By Lemma 3.1.1 the only proper subrepresentations of V' are kY and h, but Lemma
3.1.2 tells us that Y ¢ b when p t n, therefore h has no proper subrepresentations and is
irreducible. O

If p f n then b is an irreducible subrepresentation of V' with a direct complement. We
will now explore the structure of V' in arbitrary characteristic by considering a short exact
sequence. Recall that triv has a basis given by {1iriv} with trivial action g.1l¢riy = lyriy for
all g € Sp,.

Proposition 3.1.5. There exists maps o : ) — V and B : V — triv such that the sequence
0—b-5V Ly triv—0

is a short exact sequence of representations of S,. Therefore the quotient V/§ is isomorphic

to a trivial representation triv.

Proof. We defined h as a subrepresentation of V', so let the map « be the inclusion h — V.
This ensures the sequence is exact at h. We will deduce the map 8 by considering the
condition im a = ker .

For each basis vector y; € V' we have B(y;) = A - leriv for some \; € k. However, if
im o = ker 8 then everything in b is sent to 0 by 8 because im o = h. Let y; — y; be an

arbitrary basis vector in b, so

0= ﬁ(yl - yj) = 5(3/1) - ﬂ(y]) = )\z “liriv — )\j iriv = (>\z - )\j> liriv = )\1 = )\j
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which holds for all j # i. Without loss of generality we can assume A; = 1 for all ¢ since any
nonzero multiple of 8 will also give a short exact sequence. Hence [B(y;) = l¢riy for every
basis vector y;. We will now verify that this definition of S indeed gives us a short exact
sequence.

For the sequence to be short and exact we require im « = ker 8. We can show this, since
h =spam{y; —y; | i # j} and y; — y; € ker 8 for all i # j, so we know that im a C ker £.
Furthermore, dimV = n and since 3 is surjective we have dimim g = dimtriv = 1, so
dimker 5 = n — 1. As dimim o« = n — 1 we can conclude im o = ker 3, therefore the

sequence is short and exact. ]

By Lemma 3.1.2, this sequence splits if and only if p t n and we will now show that this

condition may be deduced from the definition of a split exact sequence.

Proposition 3.1.6. Consider the short exact sequence
0—bh-5V L triv—0

from Proposition 3.1.5, where o : h — V' is the inclusion of b into V, and 5 : V — triv is
defined by B(y;) = leriv for all i € {1,...,n}. This sequence splits if and only if p t n.

Proof. If the sequence splits then it is right-split, so there exists a section of 8, which is a
map ¢ : triv — V with the property that 8 o d is an identity map on triv.

Suppose the sequence splits. The section § is determined by where it sends the basis
{1triv} of triv. The image §(1l¢riv) is an element of V' therefore §(leriv) = a1y1 + -+ + anyn
for some coefficients ay,...,a, € k. However, § is a map of representations and therefore

commutes with the action of S,. For all permutations g € S,, we have

liriv = g-ltriv - 5(1triv) = 5(9-1triv)
- 5(1triv) = g°5(1triv)
= @y + -+ anYn = g-(a1y1 + -+ anyn).

The effect of g on the element a1y; +- - -+ anyn is to permute the coefficients. Since the result
is equality for all permutations g € S, we can conclude that all the coefficients a1, ...,a, € k
are all equal. Hence there exists a nonzero constant a € k with 6(1¢riv) = alyr + -+ + yn)-

We require /50 0(1leriv) = leriv, SO

1triv = 5(5(1triv)) = B(Czyl +- ayn)
=aB(y1) + -+ aB(yn)

=a-lgpiv+ -+ a Lipiv = n(a : 1triv)-
If p | n then liriy = n(a - lgriv) = 0 and this is a contradiction. Therefore we must have
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p t n when the sequence splits. If p ¥ n then liriy = n(a - lyriy) = a = n~ - and
5(1triv) = %(yl + 4+ yn) = %Y O

When ptn, V splits as a direct sum V = h @ kY with irreducible factors. Therefore
0chcCcV

is a composition series for V' where V/h = triv and h = stand.
When p | n, for all (n,p) # (2,2)
OckYychpcV

is a composition series for V' with irreducible factors V/h = triv, h/kY and kY = triv.
When (n,p) = (2,2) we have h = kY so h/kY =0 and

o0ochpcCcVv

is a composition series for V' with irreducible factors V/h = triv and h = triv.

It is standard practice that the reflection representation chosen should be an irreducible
representation of the reflection group. However, for the sake of consistency we will fix the
reflection representation of S, to be § in all characteristics. Different authors make different
choices for which reflection representation to use, with some authors preferring to use the
representation we denote V and others using what we denote by h. Despite these differ-
ences, in characteristic p 1 n it is possible to translate results between conventions and the

representation theory does not depend on this choice, as explained in Section 4.2.

3.2 The dual picture

Let V* be the dual representation with dual basis {x1,...,2,}, so that (z;,y;) = ;; where
(+,+) denotes natural pairing V* @V — k.

Lemma 3.2.1. The representations V and V* are isomorphic representations of Sy,.

Proof. The map ¢ : V' — V* defined by ¢(yr) = x for all k € {1,...,n} is an isomorphism of
vector spaces because V and V* have equal finite dimension. The map ¢ is an isomorphism
of representations if it commutes with the action of S,, and it is sufficient to show this with
generators and a basis.

Let 4,5 € {1,...,n}, i < j so that (ij) € S, is a generator, and let k € {1,...,n} so yx
is an arbitrary basis vector in . For g € S, the action on the dual space V* is defined by
(g.z,y) = (x, g y) for all y € b, z € h*. We will show that gb((zg)yk) = (i7).0(yk).
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Using properties of dual bases we can write

n

(if)-xk = > _((i)-xh, yi)r.

=1

By the definition of the dual representation we have

M=

i)z = ) (k, (i7)-y1)x1

=1

noting that transpositions are self-inverse. The coefficient (xg, (i7).y;) of x; is 1 if and only if
(i)-y; = yg, otherwise the coefficient is 0.
Suppose that (ij).yx = yr. It then follows from the above expression that (ij).xr = z.

Hence
O((i)-yk) = S(yr) = i = (i)-wk = (i)-S(Yr)-
Now suppose that (ij).yx # yr. Therefore either k = ¢ or k = j. Note that
(if)owi =Y (i, (if) ) =
=1
and it follows that (ij).z; = z;. Now if k =4 then
O((i5)-yk) = d(y;) = x5 = (if)-wi = (if)-S(yk).

Similarly if £ = j then

o((ig)-yr) = o(ys) = x; = (ij)-x; = (i5)-S(yk)-

Since V' and V* are isomorphic representations, Lemma 3.1.1 implies that V* also has exactly
two subrepresentations (one trivial and one standard), and Lemma 3.1.2 implies that V*
decomposes as a direct sum of its two subrepresentations if and only if p { n. By exactness

of the dual functor we have a short exact dual sequence
0—>triv*ﬂ—>V*a—*>b*—>0

where triv* has a dual basis {liriy+} with the property (liriv+, liriv) = 1. By short exact-
ness, 5* is an inclusion map and we will determine the image of 5* by applying 5*(1¢riv<) to
the basis of V. Since

B*(ltriv*)(yi) = <1triv*a/8(yi)> = <1triv*a 11:riv> =1
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for every i € {1,...,n} this tells us that *(l¢rivs) = 21 + T2 + - - + . As representations,
triv* 2 triv and we know that V* has a trivial subrepresentation. In fact g* maps triv*
to its isomorphic copy inside of V* which is given by the trivial subrepresentation kX where

X=x14+ - +z, € V. We can now write the short exact dual sequence as
0—kx v g .

The representation h* = V*/kX is a quotient representation and it is dual to h with dual
basis {Z1,...,Tp_1}, where Z; is the image of x; under the quotient map a* : V* — h* for
every i € {1,...,n}. Furthermore, the above sequence splits under the same conditions as
V, that is, when p{ n we have V* 2 kX @ b*.

In general, if we define b as a subrepresentation of V' then consequently h* is a quotient of
V* because the dual functor inverts the direction of arrows in a short exact sequence. We can
swap the roles of V and V* with little consequence, provided that h and h* are still defined
with one as a subrepresentation and the other a quotient. However in characteristic p { n,
when V' and V* split as direct sums, we may take the perspective that both  and h* are

subrepresentations.

Proposition 3.2.2. Suppose ptn. The map 7 : h* — V* defined by

X
(%) =z — —
(@) = zi — —
foralli e {1,...,n} is the section of the map a* in the in the split exact sequence

a*

0—kX v 2Spr 0
which realises b* as a subrepresentation of V*.

Proof. When p t n the above sequence splits, therefore it is right-split and there is a section
of a* we call 7w : h* — V* with the property that a* o is an identity map. The map «* is the
quotient of V* by kX therefore for any constant A € k we have o*(x; + AX) = T;. We require
o*(m(Z;)) = @; for every ¢ € {1,...,n} so let n(T;) = z; + a; X for some constants a; € k.
Since 7 is a map of representations, it commutes with the action of S,,. Takei,j € {1,...,n}
with 4 # j and observe that

i7)-(m(73))
= (ij).(zi + a; X))
=x; +a; X
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which implies the constants a1 = a2 = -+ = a,, are all equal. Let a € k be this constant so

that for all i € {1,...,n} we have 7(7;) = z; +aX. Now to determine this constant, see that

0=70)=n@1+T2+ - +7n)
=(x1+aX)+ (z2+aX)+ -+ (z, + aX)

=X + (na)X
which shows that na = —1 and a = —%. Therefore the map 7 : h* — V* defined for all
ie{l,...,n} by n(Ti) = x; — % is the section of the quotient map a* and realises h* as a
subrepresentation of V* O

In characteristic p t n, the map 7 allows us to perform calculations in h* more easily
because we can lift the calculations to V* and then take a quotient to h* afterwards. In this
way, we need not think of h* as a quotient and thus do not have to be mindful of X-cosets

in our calculations. However, in characteristic p | n we do not have this luxury.

Since V and V* are isomorphic representations they have the same composition series.
When p 1 n, V* splits as a direct sum V* =2 kX @ h* with irreducible factors. Therefore

och*cVv”®

~

is a composition series for V* where V*/h* = triv and h* = stand. When p | n, for all

(n,p) # (2,2)
OckXcWcV*

is a composition series for V* with irreducible factors V*/W = triv, W/kX and kX = triv
where W = {3 b;z; | > b; = 0} is an irreducible representation isomorphic to h. When
(n,p) = (2,2)

Och*cVv*

is a composition series for V* with irreducible factors V*/h* = triv and h* = triv.

3.3 Symmetric polynomials

In order to construct a baby Verma module it is important for us to determine the invariants
of our chosen reflection group S,,. If the invariants form a polynomial algebra then the Hilbert
series of the algebra of invariants is easy to describe based on the degrees of its generators.
Consequently, the Hilbert series of the baby Verma module is also easy to describe. In this
section we will describe the algebras of S, invariants in both S(V*) and S(h*) for all n and

p, and summarise the results in Proposition 3.3.12.
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In certain characteristics, a theorem due to Claude Chevalley [Ch55], and Shephard—Todd

[ShTo54] gives the necessary condition for the algebra of invariants to be polynomial.

Theorem 3.3.1 (Chevalley-Shephard-Todd). Let W be a vector space over a field k and
let G < GL(W) be a subgroup with chark { |G|. The algebra of invariants S(W*)¢ is a

polynomial algebra if and only if G is a reflection group with reflection representation W .

The Chevalley-Shephard-Todd theorem tell us that the algebras of invariants S(V*)%* and
S(h*)5» in characteristic p > n are polynomial because |S,| = n! has divisors 1,2,...,n and

Sy is a reflection group on V and b.
Definition 3.3.2. The elementary symmetric polynomial of degree d is
a\é: Z Ljy Lig - -« Ly, -
1<t <ia < <ig<n

The elementary symmetric polynomial of degree d is the sum of all monomials with d

distinct variables chosen from 1, ..., z,. In particular, o7 = > ;" ; 2; = X and 0, = [, @;.
Example 3.3.3. The elementary symmetric polynomials for n = 2 are
EI =1 + X2,
02 = 1172,
and og = 0 for all d > 3.
Example 3.3.4. The elementary symmetric polynomials for n = 3 are
o1 =1 + o2 + x3,
02 = 1122 + 1173 + 1273,
03 = T1T273,
and oy = 0 for all d > 4.

Theorem 3.3.5 (The Fundamental Theorem of Symmetric Polynomials). For all n, and
for all field characteristics, the algebra of invariants (SV*)5* is a polynomial algebra with

homogeneous generators 1,039, ...,0n.

Proof. This is a well-known result, with the classical proof due to Gauss. For an alternative
proof see [BlCol7]. O

The Fundamental Theorem of Symmetric Polynomials concludes that any symmetric
polynomial can always be expressed as a polynomial in the elementary symmetric polynomials
01,...0, in a unique way and that this holds over fields of arbitrary characteristic. This can

be written as (SV*)*n = k[oy,...,0n).
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Remark 3.3.6. In good characteristic, there are multiple choices of the generators of (SV*)%n.
For example instead of the elementary symmetric polynomial o3 we could choose the so-called
power sum

T+ a4t
as a generator in degree 3. However, in characteristic p = 3 we have

234 ad 2l = (o 2a bt 2e) = 57
which shows that some choices of generators may fail to be algebraically independent in all

characteristics.

The Fundamental Theorem of Symmetric Polynomials (FTSP) tells us that over fields
of any characterstic, the invariants of S(V*) are polynomial and the elementary symmetric
polynomials of degrees 1,2,...,n are a good choice of generators. We will now consider
the representation h* to determine the invariants of S(h*) and whether or not they form a

polynomial algebra. We begin with the following result of Haruhisa Nakajima.

Proposition 3.3.7 (|[Na79], Proposition 4.1). Let U and W be faithful representations of a
reflection group G and suppose there exists an epimorphism U — W . If S(U)G 1s polynomial
then S(W)Y is polynomial.

By FTSP, the algebra of invariants S(V*)" is polynomial. The representation h* is a
quotient of V* therefore there is an epimorphism V* — h*. Hence to determine when S(h*)»

is polynomial we only need to determine when V* and h* are faithful representations of .S,,.
Lemma 3.3.8. The symmetric group S, acts faithfully on V*.

Proof. Let o be any element of S,, other than the identity. There exists ¢ € {1,...,n} such
that o (i) # i, hence o.x; # x;. O

Lemma 3.3.9. The symmetric group S, acts faithfully on b* unless (n,p) = (2,2).

Proof. Recall h* is the quotient of V* by kX = spany{x+- - -+x,}, with a basis {77, ..., Tn_1 }.
Let o be any element of .S, other than the identity.

Case 1 Suppose that there exists ¢ € {1,...,n} such that o(i) # 7 with both ¢ # n and
o(i) # n. Now 0.7; = ZT,(; # T; which shows that S, acts faithfully on h*.

Case 2 If such an i does not exist, then there exists an i € {1,...,n—1} such that o = (in).
In b* we have T1 + T3 + - - - + T, = 0 therefore T,, = —T1 — T2 — -+ — Tp,_1. Now
O.Ti =Tp=—T1 —T2 — " — Tn-1
which is different to Z; unless (n,p) = (2,2). O
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Chapter 3. The Symmetric Group and Its Invariants

Although S2 does not act faithfully on h* in characteristic 2 we can still determine its

invariants in this case.

Lemma 3.3.10. In characteristic 2, the algebra of invariants S(h*)>2 is a polynomial algebra

generated by x7.

Proof. When n = 2 and p = 2, we define h* as the quotient of V* = spany{z1,z2} by the
submodule kX = spany{z; + z2}, with basis {Z1} and 71 + 73 = 0. Now

(12).71 =Ty = —T1 =T1

therefore 77 is an So invariant of S(h*). Since S(h*) is generated by Z7 we have shown that

S(h*)%2 = S(h*), hence the algebra of invariants is polynomial. O

From these lemmas, we can conclude that the algebra of invariants S (h*)S” is always
polynomial. The following result of Gregor Kemper shall be used to determine the generators
of S(h*)5n.

Proposition 3.3.11 ([Ke96], Proposition 16). Let G be a finite group and W be a faithful
representation of G of dimension m over k. Suppose fi,..., fm € S(W)C are homogeneous
invariants of degrees dy,...,d,,. These invariants are generators of S(W) if and only if

fis-. ., fm are algebraically independent over k and []", d; = |G|.

Denote by 7; the image of the elementary symmetric polynomial ¢; under the induced
quotient map S(V*) — S(h*). Since 73, ...,0, are algebraically independent homogeneous
invariants of degrees 2,...,n it follows from Kemper’s Proposition that these quotients of
elementary symmetric polynomials are the generators of S(h*)>» for all (n, p) # (2, 2) because

|Sn| = n! which is the product of the degrees of 73,73, ..., 7,.

Proposition 3.3.12. The algebras of invariants S(V"‘)Sn and S(h*)S” are always polynomaial

algebras with generators given by the following table.
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Algebra of Polynomial
invariants n,p invariants | Generators Hilbert series
S5 | alln, all s 55T !
Y p y 1,025,...,0n (172)(1722)(172’”)
(n.p) = (2,2) 77 1
n,p) = es T
; D ) Yy 1 1— 2
S(b7)>"
_ _ 1
(nvp) 7& (232) yes 02, yOn (1_22)'“(1_2:71)

Table 3.3.A: Algebras of invariants, and their generators and Hilbert series.

In characteristic p { n, we have a map w : h* — V* which realises b* as a subrepresentation
of V* as explained in Proposition 3.2.2. In this case, the map extends naturally to a map
We

S(H*) = S(V*) and we define by o; = w(a;) the symmetric polynomials oo, 03, ... ,0,.

use {02,...,0n} as generators of S(h*)* when p { n.

It should be noted that the invariants of S(h*) are special, because h* is defined as a
quotient of V* and we can therefore use the work of Nakajima to conclude that the invariants
are polynomial. If we were instead to consider the algebra of invariants S(h)°* then since b
is a subrepresentation of V' and not a quotient, Nakajima’s result does not apply and it turns

out that these invariants fail to be polynomial in all cases.

Example 3.3.13 ([KeMa97], Corollary 5.2). Suppose p | n, and n > 5. The algebra of

invariants S(h)>» is not polynomial.

43



Chapter 4

The Rational Cherednik Algebra of
The Symmetric Group

In this chapter we will restate the definitions and theorems from Chapter 2 in the case of the
reflection group G = 5,. We will also explain the discrepancies which may arise depending

on the choice of reflection representation.

4.1 The type A, _; rational Cherednik algebra

The symmetric group S, is a Coxeter group of type A,_;. For this reason the
rational Cherednik algebra corresponding to the symmetric group is also called the type A,_1
rational Cherednik algebra. We fix our reflection group G to be the symmetric group S,,. Let
V = span{y1,...,yn} be the permutation representation of S,, and denote its dual represen-
tation by V* = span,{x1,...,2,} with a dual basis so that (x;,y;) = d;; where (-,-) denotes
natural pairing V*® V — k and

L 1=y,

0 i#j.

For the reflection representation of .S,,, we fix the subrepresentation

f):{ZaiinV Zaizo}CV
=1 1=1

5ij =

of V' with basis {y1 — Yn, Y2 — Yn, ---» Yn—1 — Yn } and spanning set {y; —y; | i # j}. The
dual of b is the quotient representation h* = V*/kX where X = z1 + --- + z,,. The pairing
(+,+) descends to h* ® b such that h* has a dual basis {Z1,...,T,_1} where T; the image of
x; under the quotient map a* : V* — b* for every ¢ € {1,...,n}. The reflections in S,, are
the transpositions (ij) for 1 < i < j < n. By Proposition 1.1.7, for each s = (ij) there is a

unique element a5 ® o) € h* ® h where s and o span the images of (1 — (7)) in b* and b
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respectively. For the symmetric group, we pick «;;) = T; — T; and calculate aéj) =Y — Yj-
All the reflections in S,, belong to the same conjugacy class, so the parameter ¢ is some
element of the field k. We also choose some ¢ € k. We construct the Cherednik algebra
H; (S, b) as the quotient of k[S,] x T'(h & h*) by the relations

2,21 =0, [1,91=0, [y,2]=(z,y)t—c > ((1—(i5))-x,y)(if)
(if)es

for all z,2' € b* and y,y’ € h. For each irreducible representation 7 € 3’; we can construct
the Verma module M; .(7) which is S(h*) ® T as a vector space. Given f®@v € S(h*) ® 7 the

action of the algebra is given by
z.(f ©v) = (zf) ®v,
g9-(f®v) = (9.f) ® (9-v),

y-(f@v) =t0,(f) @v—c Y (T —T,y)

(ij)eS v

® (ig).v

for any z € h*, g € S, and y € b.
By Proposition 3.3.12, for all (n,p) # (2,2) the generators of the invariant subalgebra S(h*)%"
are the quotients of elementary symmetric polynomials, 9,03, ..., 0,, which have degrees 2,

3,...,n. Using the formulas given in Examples 2.6.9 and 2.6.10, we obtain the following.

Example 4.1.1. When (n,p) # (2,2), the Hilbert polynomial of the baby Verma module
NO,C(STH b7 T) is

dim 7

Hilby, (5,67 (2) = (1 = 2%)(1 = 2°) -+ (1 = ZH)W :

Example 4.1.2. When (n,p) # (2,2), the Hilbert polynomial of the baby Verma module
Nl,C(STm b7 T) is

dim 7

Hilby, (5,6, (2) = (1 = 2P)(1—2%) - (1— znp)m i

The only non-trivial linear character of S, is sign which acts on reflections by —1. Since
sign = sign ® triv, the character of L;.(sign) can be calculated from the character of

L; _.(triv) using the formula in Corollary 2.8.3,

XLt,c(SigIl) = XLtﬁC(triv) : [Slgn]
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Proposition 4.1.3. Consider the rational Cherednik algebra Hyo(Sp,b).
1. Ift =0, all ¢ # 0 are generic.

2. Ift=1, all c ¢ F, are generic.
Proof. By Proposition 2.1.2, Hg¢(Sp,h) = Hoxe(Sn,h) for any nonzero A € k, hence all

nonzero c are generic at ¢ = 0. At ¢ = 1 this is Proposition 2.8 in [Lil4]. O

Let us rephrase Theorem 3.2 from [Lil4] here in our conventions (as [Lil4] works with the
reflection representation V' and we work with h) and state a slight strengthening of it with

the same proof.

Proposition 4.1.4 ([Lil4], Theorem 3.2). Let k be an algebraically closed field of character-
istic p, and consider the rational Cherednik algebra Hy.(Sy,b). The character of the irre-

ducible representation Ly (triv) is

XLt c(triv) (Z) = [triv]

if and only if t = cn. In particular, this holds when t = ¢ =0, and when p does not divide n

and the values of the parameters are t = 1,¢ = 1/n.

Proof. 1t suffices to note that

Dyi—y; (Tk) = 10y~ (Tk) — € (Z (i = Yj, Ta — Tp) xk_(ab)'xk>

a<b

= t(0 — dj) — ¢ (Z (Yi — Y5> Tk — xa))

a

= (t—CTL)((si —(Sj )

This shows that all 7, € M} (triv) are singular if and only if ¢ = cn.

4.2 Moving between V and §

In characteristic p ¥ n, when b is a direct summand of V', the character of the irreducible
object Ly (S, b, T) in category O for Hy.(Sy,h) can be derived from the irreducible object
L c(Sp,V,7) in category O for H;.(Sp,V). Therefore whether one chooses V or b as the
reflection representation of S, has no real impact, but here we describe how to translate

results between conventions.

Lemma 4.2.1. Leti € {1,...,n}. The following sums are equal.

seS

D (= s).mi,yiys = Y (ik)
k=1,
£i
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Proof. For each s € S, observe that the pairing (z; — s.x;, y;) is zero when s.x; = x; and 1
otherwise. The reflections s € S such that s.z; # z; are all reflections of the form s = (ik)

where k € {1,...,n} and k # 1. O
Lemma 4.2.2. Leti,j € {1,...,n} and suppose i # j. The following equality holds.

> (1= s)zi yy)s = —(if)

seS

Proof Observe that the pairing (x; — s.x;, y;) is only nonzero for the reflection s = (ij), and

Lemma 4.2.3. For alli,j € {1,...,n} and all d > 1 we have the following commutation
relations in Hy o(Sy, V).

1. [Y,x; — zj] = 0.
2. [yi, X] =t.
3. [yi, X = tdx 41
whereY =y1+---+yp and X =21+ -+ + .

Proof. The proofs are by direct calculation which we now show, while making use of the

identities shown in the previous two lemmas.

Proof of 1.
Yz — 2] = [ynowi] = > _[yk: 7]
k=1 k=1
=5 ((tanme = (1= 9)mds)
k=1 s€S
— Z ((xj, yr)t — cZ((l - s).xj,yk>s>
k=1 s€S
= Z (<xiyyk>t - CZ<(1 - 5)-$i,yk>3> (@i, yi)t CZ (1 = s)wi,yi)s
k=1, ses ses
ki
— ((xj,ykﬁ - cZ((l — s).xj,yk>s) — (zj,y)t + cZ((l — §).Tj,Y5)S
k=1, ses ses
[
= <O+czk>+t—cz (ik) Z<O+c(jk>—t+chk )=0.
k=1, = k=1,
k#i k;éz k#j k;ﬁ]
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Proof of 2.
[y, X] = Z[@/uxk]

k=1

= ((xk,yiﬁ —cY ((1—s) xk,yz>8>
k=1 sesS

= <<xk7yl>t Cz«l 75) xkayl>s)
k=1, seS
ki
+ <$iayz>t - Cz«l - S) Ty, y1>5

ses

= <O+c(ik)> —i—t—cZ(zk):
k=1, k=1,
k#i k#i

The proof of & follows from the proof of 2 by induction. ]

In characteristic p 1 n, h* has a direct complement in V* therefore there is a natural
inclusion S(h*) — S(V*), and we can consider every f € S(h*)®7 as an element in S(V*)®7.

Lemma 4.2.4. Suppose p{n and let f € M o(Sn,b,T) be a homogeneous vector of positive
degree. If f is singular in My .(Sy,h,T) (or some quotient thereof), then f is singular in
M; (S, V,T) (or some quotient thereof).

Proof. Suppose f is singular in My ¢(Sp, b, 7) (or some quotient thereof) so that Dy, . (f) = 0
for all 7, j. By Lemma 4.2.3, Y commutes with everything in h* and therefore commutes with
every element of S(h*). Now f =5 f; ® v; for some f; € S(h*) and v; € 7, so

DY(f):Y(Zfi(g)vi):nyi(g)vi:Zfiy®vi:Zfi®Yvi:0

hence f is in the kernel of the Dunkl operator Dy. Now for any i € {1,...,n} we have

0=""Dyy,(f) + Dy (f) = Dny,(f) = nD,(f)
j:17
J#i

therefore in characteristic p { n we can conclude that D, (f) = 0 for all <. Hence f is singular

as an element of M, .(Sy,,V,T) or some quotient thereof. O

In characteristic p { n, the permutation representation V splits as a direct sum V' = hpkY .
Consequently the dual representation splits as V* = kX @ h* and therefore the symmetric
algebra of V* decomposes as S(V*) = k[X]| ® S(b*).
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Lemma 4.2.5. Suppose p t n and let f € S(V*) @ 7 be a homogeneous vector of degree d
with

d
F=> X",
=0
where f; € SY(b*)RT has degreei. If f is singular in My .(Sn,V,T) (or some quotient thereof),

then Dy, .y, (fi) =0 for alli € {1,...,d} and j,l € {1,...,n}. That is, if f is singular then

the fi are singular vectors in My (S, b, T) or some quotient thereof.

Proof. Suppose f € S(V*) ® 7 is singular. For all j € {1,...,n} we have

d d
0=Dy,(f) =Dy X i = lyp, XN+ > Xy, f;

d
=0 i 1=0

T
[ )

d
Hd—=D)X i+ Y XD, ()
1=0

~
I
o

d
td—i+ )X 1+ ZXd*lDyj (f)
i=1

I
,M&

s
I
n

XTH Dy, (fi) +t(d =i+ 1) fim1),

I
,M&

I
_

(2

therefore since Dy (f;) € S(b*) ®7, we have Dy, (f;) = —t(d—i+1)fi1 foralli e {1,...,d}.
Now for all i € {1,...,d}, j,l € {1,...,n} we have

Dyj*yl(fi) = Dyj(fi) - Dyz(fi)
=—t(d—i+1)fioi+t(d—i+1)fi_1 =0.

therefore f; is singular in M; .(Sy, b, ) (or some quotient thereof). O

Proposition 4.2.6. Letk be an algebraically closed field whose finite characteristic p does not
divide n, T an irreducible representation of Sy, Lt (Sy,V,T) the irreducible representation
with lowest weight T for the rational Cherednik algebra Hy (S, V) over k generated by
V,V*, S, and Ly (Sp, b, 7) the irreducible representation with lowest weight T for the rational
Cherednik algebra Hy (Sy,h) over k generated by b,4*,S,. Their characters are related as

follows:

e ift =0,

XLo.o(Sn,Vir) (2) = XLo.o(Sn b,r) (2)

o ift=1,

1—2P
XLa,o(50, Vi) (2) = XL o5 0. (2) | 77— )
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Proof. The irreducible representation Lg .(Sy, b, 7) (respectively Ly .(Sy, b, 7)) can be written
as a quotient of the Verma module Mg .(Sp, b, 7) (respectively My .(Sy, b, 7)) by a submodule
(f1, fay-- ., fx) generated by some homogeneous vectors f; of degrees d; € N. We can assume

without loss of generality that 0 < d; < dy < ... < dg, and for every ¢ and all y € h we have

Dy(fi) € {f1,..., fi-1).

We claim that when t =0
Loo(Sn, V. 1) = Moo (Sn,V,7)/ {f1, f2s .-, [k, X @ T)
where X ® 7 denotes X ® v for every v € 7. Respectively, when t = 1 we claim
L1 c(Sp, V,7) =2 My o(Sn, V. 7)) (f1, fo, .-, fe, XP @ 1)
where XP ® 7 denotes XP ® v for every v € T.

First, by Lemma 4.2.4, for every i and all y € V' we have Dy(f;) € (f1,..., fi—1)-

Next, by Lemma 4.2.3 part (2), when ¢t = 0 we have [y, X] = 0 for all y € V, and by part
(3) when ¢ = 1 we have [y, XP] =0 for all y € V. As a consequence, for t = 0 the set X @ 7
consists of singular vectors in degree 1, and when ¢t = 1 the set X? ® 7 consists of singular

vectors in degree p.

For t = 0 we set Jy = (f1, f2,---, fx, X ® T) and respectively for ¢ = 1 we set J; =
(fis fay -y f&, XP® 7). In both cases, the above shows that J; is a proper submodule of
My o(Sp,V,7), and so Lt (Sy, V,7) is a quotient of M; .(Sp,V,T)/J;.

Finally, let us show that the module M, .(Sy,V,7)/J; is irreducible. If it is not, then
there is a homogeneous vector v € Mt‘fc(Sn, V,7), which is not in J;, and is such that for all
y € V we have Dy(v) € J;. We can assume without loss of generality that d is the smallest
such degree. Write v € S(V)*®@ 7 = k[X|@S(h*)®@T asv = Z?:o X =iy, for v; € SU(h*) @ T.
The condition D, (v) € J; for all j € {1,...,n} then becomes

d d d
Dy, (v) = Z yi X = [y, X + Z Xy,
=0 =0 =0

d—1 ' d '

=> td-i) X"+ Y XDy (v)
=0 =0

=> td—i+ )X+ Y XD ()
=1 =1

I
.M&

@
I
—

XDy, (v5) + t(d — i+ 1)vi1) € .
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This can be rewritten as
XDy (v;) = —t(d —i—1)X w1 (mod J;)
for all i € {0,...,m}, j € {1,...,n}. This implies that for any j,l € {1,...n} we have

Xd_iDyj*yz (vi) = Xd_iDyj (vi) — Xd_iDyz (vi)
= —t(d—i— D)X +td—i—1)X" 1 =0 (mod J;)
and consequently
XD, (v) €y forallyeh, i€{0,...,d}.
We now consider two cases:

e Suppose t = 0. The summand of v = Z?:o X4y, when i = d is vg € S(b*) ® 7. Since
Dy(vd> S <f1a f27 ceey fk> for all (S [] and Mt,C(Sn7 h?T)/ <f17f27 .. '7fk> = LO,C<Sna haT)

is irreducible, it must be the case that vg € (fi,..., fx). However,
d—1 A
v = Ud+XZXd_Z_1Ui € <f1>"'7fn7X®U> = Jo,
i=0

which contradicts the assumption that v ¢ Jj.

e Suppose t = 1. Asforall y € h, i € {0,...,d} we have
X'Dy(vi) € (1o fr XP @ T)
we can in particular conclude that for all 4 such that d — i < p and all y € h we have
Dy(v;) € (f1,---s fu) -
Since M1,¢(Sn,b,7)/ (f1, f2,- -, fx) = L1,c(Sn, b, 7) is irreducible, we conclude that

Ui€<f1,...,fk>, foralld—p<i<d

But then
d—p ‘ d ’
U:szXd_p_Z’Ui‘i’ Z Xd_zvie<f17"'7fk7Xp®T>:‘]17
=0 i=d—p+1

which contradicts the assumption that v ¢ Jj.
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Chapter 5

Survey of Related Work

In this chapter we will review recent work with which this thesis has nonzero intersection.
As previously mentioned, there is a choice of reflection representation when constructing the
rational Cherednik algebra for S,,. Some authors use the permutation representation V' and
others use the subrepresentation h. The algebras Hy (S, V) and Hy(Sp,bh) are related and
in characteristic p t n the characters of irreducible modules for one algebra can be deduced

from the other by using the following formulas.

XLO,C(Sn,V,T)(Z) = XLo,c(sn,h,T)(Z)

1—2P
XL,e(Sn,Vir) (2) = XL o000 (2) | T

For a detailed discussion of moving between V and §, see Section 4.2 where we prove these

formulas.

5.1 Representations of rational Cherednik algebras of rank

1 wn positive characteristic, Frédéric Latour.
Journal of Pure and Applied Algebra (2005) [La05]

In this paper, Frédéric Latour describes irreducible representations of the rational Cherednik
algebras associated to cyclic groups in positive characteristic. The cyclic group Z/rZ of order
7 is a reflection group with cyclic generator s and reflection representation b = span, {y} with
action s.y = ey for € € k a primitive rth root of unity. Latour considers the representation
theory of the associated rational Cherednik algebras over a field of positive characteristic p
which is relatively prime to r. This overlaps with our work since the cyclic group Z/27Z is
isomorphic to the symmetric group Ss.

In Latour’s notation, we fix r = 2 and consider the cyclic group Z/27Z which corresponds
in our notation with fixing n = 2 and the symmetric group Ss. Since € € k is a primitive

rth root of unity, we shall fix ¢ = —1 and therefore the reflection representation of Sy we
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use is sign. In Latour’s work, the field k of characteristic p relatively prime to r must have
characteristic p > 3 when considering Ss. Latour denotes by H;., a rational Cherednik

algebra with generators z, y, s and relations
s2=1, sx=—xs, sy=—ys, [y,x]=1t—ci5.

This corresponds with our definition of Hy.(S2,h) with rescaled parameters, where ¢; = 2¢,
y = y1 — yo is the basis of h, x = T is the basis of h* and s is the non-identity element of
S9. The two irreducible representations 7 € S*; in characteristics p > 3 are 7 = triv and
7 = sign; this is captured by Latour’s parameter m € {0,1} with m = 0 referring to triv
and m = 1 referring to sign. Where Latour writes (—1)™ we would write x-(s). The Verma
module Mj .(S2,h,7) has a basis {z' @ v | i > 0} where {v} is a basis of 7.

In the propositions that follow, we can identify the basis element v; € W,, with 2’ ® v €
Si(h*) ® 7. There are two irreducible representations of So in characteristic p > 3 and so the
propositions state that there are two irreducible representations of Hy .(S2, ) as expected. We
specialise the statements of the following propositions to the specific case we study, although

the original statements in Latour’s paper are more general.

Proposition 5.1.1 ([La05], Proposition 2.8). In characteristic p > 3, for each m € {0,1}
there exists a unique irreducible representation Wo m of Hoc(S2,h) with 22 =9y> =0 and
s.v = (=1)™v whenever y.v = 0. The dimension D < 2 of Wy, is the smallest positive

integer satisfying the equation

D-1 ‘
0=2c(-1)" S (-1)%. (5.1.2)
i=0
Wo.m has a basis {vo,v1,...,vp_1}, such that

T = Vit for0<i< D -2,

z.vp_1 =0,

YU = Vi1 for1<i<D-1,

Y.vo = 07

s.0; = (=1)™(=1)%; for0<i<D—-1,

where pg = —2¢(—1)™ Zf;&(—l)i. Every irreducible representation of Hy .(S2,h) on which

z2 and y? both act as zero is of the form Wo,m for some m.

When ¢ =0, (5.1.2) is always satisfied, for any value of D, so we must have D = 1 as the
smallest positive integer solution. This matches our results in Example 2.4.2 and Proposition
4.1.4.

If ¢ # 0, then to satisfy (5.1.2) we require the sum Z?:Bl(—l)i to be zero, and the smallest
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positive integer value of D for which this happens is D = 2. This agrees with our result in
Proposition 6.1.5.

The irreducible modules described by this proposition are those in category O, as can be
seen by the condition 22 = y? = 0. An irreducible module in category O, is either a baby
Verma module Ny .(7), or a quotient of a baby Verma module. The Ss-invariant in S(h*)
is 22 therefore 22 = 0 in any irreducible module in category Oo,c because this invariant is
annihilated when taking the quotient to the baby Verma module. The baby Verma module
No.o(7) is 2-dimensional and Z-graded, therefore y? = 0 in every quotient of the baby Verma

module Ny .(7) as y reduces the degree by 1 and acts as zero in the lowest degree.

Proposition 5.1.3 ([La05], Proposition 2.5). In characteristic p > 3, for each m € {0,1}
there exists a unique irreducible representation W1, of Hi (S2,b) with 2P = y?? =0 and
s.v = (—1)"v whenever y.v = 0. The dimension D < 2p of Wiy, is the smallest positive

integer satisfying the equation

D-1
D =2¢(—-1)™ (—1)". (5.1.4)
1=0
Wi m has a basis {vg,v1,...,vp_1}, such that

TV = Vg1 for0<i< D -2,

z.wp_1 =0,

Y0i = [ivi—1 for1<i<D-—1,

y.vo = 0,

s.0; = (=1)™(=1)"; for0<i<D-1,

where p = k—2¢(—1)" Zf:_ol(—l)i. FEvery irreducible representation of Hy .(S2,h) on which

2P and y?P both act as zero is of the form Wi,m for some m.

The sum Zi’if)l(—l)i is 0 when D is even and 1 when D is odd. So in characteristic p,
(5.1.4) is satisfied for every value of ¢ when D = 2p because 2p is both even and divisible
by p. This observation is found in Remark 2.6 of [La05]. However, for some values of ¢, a
smaller positive integer solution may exist.

If ¢ = 0 then (5.1.4) becomes D = 0 which is only satisfied when D is divisible by p; since
D is the smallest positive integer which satisfies the equation we must have D = p. This
result follows from Proposition 2.6.13.

Now suppose ¢ # 0. The dimension D is either even or odd. If D is even, then (5.1.4)
becomes D = 0 which is only satisfied by D = 2p and we have seen that such solutions do
not depend on c. If D is odd then (5.1.4) becomes D = 2¢(—1)™ which we shall consider

separately for m =0 and m = 1.
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If ¢ ¢ F, then no integer D < 2p satisfies (5.1.4), so D = 2p. In Proposition 6.2.6, we
show that the only solutions strictly smaller than 2p are odd, and that such solutions require
¢ € IF,, so suppose that ¢ € {0,1,2,...,p — 1}. We distinguish two cases, m = 0 and m = 1,
and look for odd D satisfying (5.1.4).

When m = 0, (5.1.4) means that we are looking for smallest odd positive integer D which
satisfies D = 2c in F,, in other words the smallest odd positive integer D which satisfies
D =2cmod p in Z. When 0 < ¢ < p/2 this solution is D = 2¢ + p, and when p/2 < ¢ < p
this solution is D = 2¢ — p. This matches our result in Proposition 6.2.9.

When m = 1, (5.1.4) means that we are looking for smallest odd positive integer D which
satisfies D = —2c in [, in other words the smallest odd positive integer D which satisfies
D = —2c¢mod p in Z. When 0 < ¢ < p/2 this solution is D = —2c¢+p, and when p/2 < ¢ < p
this solution is D = —2¢ + 3p. This matches our result in Proposition 6.2.13.

As in the previous proposition, the irreducible representations classified here are those
in category O. This is evident from the condition #?? = y?? = 0 in each Wy,,. The pth
power of the Ss-invariant x2 € S(h*)? is annhilated when moving to the quotient baby
Verma module N; .(7), and irreducibles in category O are baby Verma modules or quotients
thereof. Furthermore, the dimension of Nj (1) is 2p therefore y* = 0 because the modules

in category O are Z-graded and y lowers the degree by 1.

5.2 Representations of Cherednik Algebras Associated

to Symmetric and Dihedral Groups in Positive
C’haracte'ristic, Carl Lian. Preprint on arXiv since 2012 [Lil4]

In this preprint, Carl Lian considers the rational Cherednik algebras associated to symmetric
and dihedral groups in positive characteristic. In Section 3 of this preprint, Lian considers the
algebra Hy »(S3, V) in characteristic p > 3 where ¢ € F,. Like us, Lian uses the notation h for
the reflection representation of S,, but in Lian’s work this is the permutation representation

which we denote V. Therefore we must be mindful of any discrepancies arising in formulas

from the factor of (11

—Zp

>. For more detail on this correspondence see Section 4.2.

Lian describes the irreducible modules L; .(triv) arising from the trivial representation

T = triv € g;
Proposition 5.2.1 ([Lil4], Theorem 2.8). If c is not in F), then c is a generic value.

This proposition implies that ¢ € F, are the only values for which ¢ can possibly be
special, since all ¢ outside of IF,, behave generically. Note that the converse does not hold
since there are cases where ¢ € IF,, behaves the same as a generic value, as shown in Theorem

9.0.1 where all ¢ behave generically.
Proposition 5.2.2 ([Lil4], Theorem 3.1). When ¢ = 0, the Hilbert polynomial of L1 o(Sp, V, triv)
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18

, 1—2P\"
HZlbLl’O(Snyv,tI‘iV) (Z) = ( 1 —z )

for all n.

To get the Hilbert polynomial of the irreducible module for the rational Cherednik algebra

1_ P
Hi o(Sn,b) we divide by a factor of ( I : ) and obtain

—Z

Hilby, (s, b,triv)(2) = ( 1—=z )

which agrees with our result in Proposition 2.6.13.

Proposition 5.2.3 ([Lil4], Theorem 3.2). When ¢ =n"", the Hilbert polynomial of Ly ,,~1(Sy, V, triv)

18
1—2P

1—2z°

HilbLlynfl (Sp,V,triv) (Z) =

As Lian considers p > 3 we have p { n and therefore n~! is permissible. After dividing by

1—2P
a factor of T the result reads as

—Z
HﬂbLLn,1(Sn,h,triv) () =1

which is a special case of Proposition 4.1.4.

In Lian’s preprint, the following proposition has an incomplete proof as it relies on work
that is unpublished as of yet. There is also an error in the statement of the proposition which

we have corrected.

Proposition 5.2.4 ([Lil4], Theorem 3.3). When n = 3 and p > 3, express ¢ as a positive
integer with ¢ < p. In the following three cases, the singular vectors which generate the

mazimal graded submodule of My o(Ss,V,triv) are found in the stated degrees.
e For0<c<p/3: p,p+3c,p+3c
e Forp/3<c<p/2:3c—p,3c—p,p
e For2p/3 <c<p:3c—2p,3c—2p,p
The following conjecture of Lian is proved by us in Section 12.1.

Conjecture 5.2.5 ([Lil4]|, Remark 3.5). We conjecture that when p/2 < ¢ < 2p/3, the
singular vectors which generate the maximal graded submodule of M (S3,V,triv) are in

degrees 6¢ — 3p, p, and p.
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5.3 Representations of rational Cherednik algebras of

G(m,r,n) in positive characteristic, Sheela Devadas and Steven
Sam. Journal of Commutative Algebra (2014) [DeSal4|

In this paper, Sheela Devadas and Steven Sam consider rational Cherednik algebras associated
to complex reflection groups G(m,r,n) in positive characteristic, and their representation
theory for generic values of the parameter c. In Section 4 of this paper, Devadas and Sam
provide characters for G = G(m, 1,n) in the non-modular case. This coincides with our work
in the case of G = G(1,1,n), which is the symmetric group S, in characteristic p > n; hence

we shall fix m = r = 1. The following results stated in the case of t = 1 are particular to the

1_ 4P
rational Cherednik algebra Hj .(Sy, V') and therefore we must consider a factor of < 7 i >
—z

in order to match their results with ours.

The authors denote by A a multi-partition of n, (A%, A1, ... A™~1). Since we fix m = 1 we
shall interpret A as a partition of n and write A\ instead. For a box s in the Young diagram
of A let hook(s) denote its hook length and let

H)\<z) _ H(l - Zhook(s)>.

SEA

Let S denote the irreducible representation of S,, parametrised by A and yx) its character.
Let \* denote the partition corresponding to the dual representation Sy\*. Let C) be the
conjugacy class of S, containing those permutations of cycle type A. Let |Z\| = |Sn|/|Ch|
denote the size of the stabilizer subgroup of any element in C) under conjugation by S,
which the authors denote z). For each partition p, the authors denote by xx(p) the value
xa(g) for any g € C,. The authors denote by & € k a primitive mth root of unity, hence we
fix £ = 1. For partitions y and A, the authors define

where p = (po, p1,- .., px) is a partition of n.

Proposition 5.3.1 ([DeSal4], Proposition 4.1). Consider p not dividing n! and 7 = Sx. The

character of Lo (1) for generic c is
XLo,e(7) (2) = ZK/ ,A(Z)[Su]-
I

In particular, the Hilbert polynomial is

H)\(Z>

HilbLO,c(’r)(Z) = (dlm T)m
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Let A denote the polynomial algebra S(V*) = k[zy,...,x,] and let A®) =Kk[zh, ... 2h].
Let Q = A/A®) and let [Q] be the character xg(z). We have corresponded with the authors
to confirm that there is a typo in their paper. The character formula for ¢ = 1 should be

written with K, ) (z¥) rather than K7, ,(2) and we correct this in the following proposition.

Proposition 5.3.2 ([DeSal4], Proposition 4.2). Consider p not dividing n! and 7 = Sx. The

character of Ly .(Sy,V,T) for generic c is

XLy o(50,v,m)(2) = [Q) Y K A(ZP)[Sy].
I

In particular, the Hilbert polynomial is

fJA(Zp)

H?;lbLLg(Sn,V,T) (Z) = (dzm T)m

In their proof of this proposition, Devadas and Sam state the following:

Ignoring the grading, one has a G-equivariant isomorphism
Q @ k[Sn] = L(S))

for all X.

The authors denote by L(Sy) the irreducible module L1 (Sy,V, ) where 7 = Sy. A basis of
Q is given by {z{*---z% | 0 < a; < p} hence dim @ = p™. Therefore we see that L(S)) has

constant dimension, with
dim L(S)) = dim (Q ® k[S,]) =p" - n!

for all A\. Considering the relation

1-—2P
XL1.o(Sn,Vir) (2) = XL1.o(Sn,vim) (2) - ( T, >
we get dim Ly (S, b, 7) = % ~dim Ly o(Sp, V,7) = p"~ 1 - n! for all 7.

In order to write the character and Hilbert polynomial of the irreducible modules Ly .(Sy, b, 7)
we must modify the formulas given in Proposition 5.3.2. In characteristic p > n considered
here, we have V* = h* @ kX. Therefore S(V*), which the authors denoted A, decomposes as
a tensor product S(V*) = S(h*) ® k[X]. We denote by S®) (V*) the quotient

S(V*)

SO0 = e esv)
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and similarly let S® (h*) be the quotient

Now we can write

The character of k[ X]/(XP) is

(11__2::> [triv]

therefore, noting that xgw)(y+)(2) = [Q)], we get

Q] = <11__Zzp> X5 (5+)(2)-

Hence our modified formula for the irreducible characters is

1—2z

XL1.o(Snbr)(2) = (1 0

- (125 )@z Kaenis)

1 — Z 1 — Zp
N <1 - zp> ( 1—2 )Xs(mm*) PO NCIIEN

w
= X5 (p*) (2) Z KL,,\(ZP) [Sul-
“w

>XLLC(SR,V,T)(Z)

To calculate the Hilbert polynomial of the irreducible module Ly .(Sy,h, ) we shall use the

1
formula in Proposition 5.3.2 and multiply by a factor of <1Zp> to get
—z

. . 1—2
HllbLLc(Sn,h,T)(Z) = HllbLLc(Sn,h,T)(Z) . (1 — >

e H(2) 1-=2
= (dim 7) H\(2)

(1—2)""1(1—2p)

We will now calculate Hilbert polynomials and characters of irreducible modules using these

formulas and show that they agree with our results.

When n = 2 we have Sy = {e, (12)} and consider p > 3. The partitions of 2 are A\; = (2)
and Ay = (1,1). These correspond to irreducible representations Sy, = triv, Sy, = sign,
and conjugacy classes Cy, = {(12)}, C\, = {e}. We have H), = H,, = (1 — 2%)(1 — 2).
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Therefore when ¢t = 0 we have

. Hy, (2) 1— 22
HllbLoyc(triv) (z) = (1 _1 2)2 = 11—~ =1+=z

and Hy,(2)
. A2 (Z
HllbLoyc(sign)(z) = (1 _2 2)2 =1+z.

This matches our results in Corollaries 6.1.6 and 6.1.8. To calculate the characters we have
|Zx,| = |Zx,| = 2. Hence

/ _ Xtriv()\l)Xtriv* ()\1) Xtriv()\Q)Xtriv* ()\2)
Ko (2) = 0 (e Z0l(— 2P

1 1
~ -0 (5 + ) <

Likewise,

Xeriv(A1)Xoigar (M) | Xersv(A2)Xsign: (A2)
K, ()= H ; ;
X (2) ﬂz)( 1Z, (1 — 22) 23] (1 = 2)?

-1 1
-0 -2 (5 + ) <+

From here we can write

XLoo(eriv) (2) = K 5, (2)[Sn] + K3, 5, (2)[S),] = [triv] + [sign]2

which matches our result in Proposition 6.1.5. Similarly one can calculate

XLo.o(sign)(2) = K 2, (2)[90] + K, 5, (2)[S,] = [sign] + [triv]e

which matches our result in Proposition 6.1.7.

Note that this follows by Corollary 2.8.3 since —c is a generic value if and only if ¢ is generic.
When ¢ = 1, we can calculate the Hilbert polynomial of L; (S, b, triv) as follows.
Hy, (Zp)

1—2)»"1(1—2P)

(-2 )
(1 —-2)(1—2P)

=1l+4z+2"+ 42771

Hilbr, .(Sy,0,triv)(2) = (dim 7')(

and this matches our result in Corollary 6.2.8. Since triv and sign have the same dimension
and Hy, (2P) = H),(2P), we also get

Hilbp, (s, h.eign)(2) = 1+ 2+ 22 + - 2271
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which agrees with Corollary 6.2.12.

To calculate characters we use

XLy o(S2.b,7)(2) = Xs<p>(b*)(z) Z KL,A(ZP)[SM]-
w

where T is the representation parametrised by the partition A. We must therefore calculate
Xsw (y+)- When n = 2, we have V* = spany{z1,22} and the quotient h* = V*/(z1 + x2)
is a sign representation of So with basis {Z7}. Hence the algebra S®)(h*) has a basis

{1,71,77%,...,717" '} and therefore its character is

X5 (p+)(2) = [triv] + [sign]z + [triv]z? 4+ - + [triv]P !

1—zPt! 2(1 —2P71)

= [trlv]ﬁ + [Slgn] 1 Z2

which is [triv] in even degree and [sign] in odd degree. We previously calculated K7 , (2) =
1 therefore K , (27) = 1. Similarly K} , (2) =z so K} , (z¥) = 2P. Hence

XLl,c(Sz,h,triV)( = Xs®)(p Z >\1 Zp

= ([triv]l_p;rl + [sign](l_zpl)> ([triv] + [sign]zp>

1—2z 1—22

C 1= 2Pt o z(1 =27 o 2P(1 — 2Pt o 2P — 2P
= [triv] Tt [sign] =2 [sign] T T [trlv]ﬁ
1=z o z2(1 = 2%P)
= [triv] . + [51gn}1_722
2p—1

— [triv] 4 [sign]z + [triv]z® + - - + [sign]z

which describes a module of dimension 2p that spans the representation [triv] in even degree
and [sign| in odd degree. This matches our result in Proposition 6.2.7.

Finally we calculate the character of Lj.(S2,h,sign). We have K} , (2) = z therefore
K} ), (2P) = 2P. Similarly K}, (2) =150 K}, ,,(z") = 1. Hence

XLl,c(Sz,h,sign) (Z) = XS(:D)(I]*) Z K/ A2 (Zp) [SM]
n

_ ([triv]ll_zz;rl + [sign]z(ll__z;l)> ([sign] + [triv]zp>

et el et
= [Slgn] 1 22 + [ter]W + [ter]W + SIgn]W
1— 2% 2(1 — 22P)

= [sign] - + [triv]—— =2

— [sign] + [triv]z + [sign|z? + - - - + [triv]z?P !
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which describes a module of dimension 2p that spans [sign] in even degree and [triv] in odd

degree. This matches our result in Proposition 6.2.11.

When n = 3 we have S3 = {e, (12),(13),(23),(123),(132)} and consider p > 5. We
have partitions A\ = (3), A2 = (2,1) and A3 = (1,1,1). These correspond to representa-
tions Sy, = triv, S), = stand, S\, = sign and conjugacy classes C), = {(123),(132)},
Cy, = {(12),(13),(23)} and C), = {e}. We have H,,(z) = Hy,(2) = (1 — 23)(1 — 22)(1 — 2)
and H),(2) = (1 — 23)(1 — 2)?. Additionally, |Z),| = 3, |Z),| = 2 and |Z),| = 6.

When ¢ = 0 we can calculate the Hilbert polynomial as

. . H (2
Hilbr, (triv)(2) = Hilbry (sign)(2) = (1_1(2))3

(1-23)(1-2%)(1-2)
(1—2)°
=(1+2z+22)(1+2)
=1+224+222+423

which is equal to the Hilbert polynomial of the baby Verma modules Ny .(triv) and Ny .(sign)
as shown in Example 4.1.1. Since the irreducible module L .(7) is a quotient of the baby
Verma module Ny .(7), we can therefore conclude that Lo (triv) = No(triv) and Lo (sign)
= Ny (sign) as described in Theorem 11.0.1. Similarly the Hilbert polynomial of Ly .(stand)(z)
is
Hilb, (stane) (=) = 2 f*j (5))3
2(1 — 23)(1 —2)?
Dk
=2(14 2+ 2%) =2+ 22 + 222

which shows that Lo .(stand)(z) is a proper quotient of Ny .(stand)(z).
To calculate the characters, we need the values of K /; ,(2) for each pair of partitions, 1 and
A. Firstly,

’ . Xtriv()\l)Xtriv* (>\1) Xtriv()\Z)Xtriv* (AQ) Xtriv()\fﬂ)XtriV* (A3)
W (2) = (0 (SR ¢ O e e )

1 1 1
= (1-2)(1-2)(1- Z><3<1 —) Tl -2 -2) 61— z>3>

:23(2(1_22)(1_Z)+3(1_23)+(1+Z+Z2)(1+Z)) — 1
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Likewise,
/ o 5 Xtriv()\l)XStand* (>\1) Xtriv()\2)Xsta.nd* ()\2) Xtriv()\?))Xstand* (>\3)
Ko (2) = Hiy ) (e R 4 Joeqengr B2 Rersy e )
-1 0 2
= (=21 =21 -2) (3(1 —3) T —2) T z)3>
:;(—(1—zz)(l—z)+(1+z+z2)(1—|—z)> =2+ 2
Finally,

/ . Xtriv(Al)Xsi n*()\l) Xtriv(AZ)Xsi n*(>\2) Xtriv()\3)Xsi n*(>\3)
Ky () = o (o) (X 2 o e Xoryoepfone 20 )

1 -1 1
= (=)= - Z)<3(1 —A) T2 A=) 6 Z>3>

= 25(2(1 —H1-2) =30 -2+ A +2+2H0+ z)) =23

Therefore the character of Lo (S3, b, triv) is

XLo o(eriv) (2) = K, 5, ()90, ]+ K, 0, (2)[S0,] + Ky 5, (2) 9]
= [triv] + [stand]z 4 [stand]z® + [sign]2®.

Similarly we can compute K3 , (2) = z, K}_,,(2) = 14 2* and K}, \,(2) = z, hence the
character of Lo (S3, b, stand) is

XLo,(stand) (2) = KX, 5, (2)[Sh] + K3, 0, (2)[Sha] + K 5, (2)[S]
= [stand] + ([triv] + [sign])z + [stand]>

which agrees the character of the module we calculate in Lemma 11.1.1, therefore that module

we calculate is irreducible. Lastly, K}, ) (2) = 2%, K}, , (2) = 2 + 2%, K}_ (z) = 1 and

XL(),C(Sigl’l) (Z) = Kg\l,/\g (Z> [S/\l] + Ké\z,)\g (Z)[SAQ] + Kﬁ\g,)\g (Z) [S)\3]
= [sign] + [stand]z + [stand]z® + [triv]z3.

When t = 1 we calculate the Hilbert polynomials of irreducible modules using the formula

HA(ZP)
(1—=2)2(1=27)

HﬂbLl,c(SB,h,T) (Z) = (dlm T)

Therefore

(1—2%P)(1 — 2%)(1 — 2P)

Hilby, (s5,triv) (2) = (1—2)2%(1—2zP) N
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= +z+22 4+ F 2P HA 42422+ 4 2P

and this is the Hilbert polynomial of the baby Verma module Nj .(S3,h,triv) as shown in
Example 4.1.2. Since the irreducible module L .(S3, b, triv) is a quotient of the baby Verma
module Ny .(S3,bh,triv), we can conclude that L .(S3,h,triv) = Ny (S3,bh,triv) as they
have the same Hilbert polynomial. This result is found in Theorem 11.0.1. Equally,

. (1—2%7)(1 — 2%)(1 — 2P)
HllbLl,c(SC’nhvSign) (Z) = (1 _ 2)2(1 _ ZP)

=1 +z+24+ 2P N1+ + 224 42

which is the Hilbert polynomial of N7 +(S3, b, sign), so by the same argument L; (53, b, sign)
= N1.(S3,h,sign) and this result appears in Theorem 11.0.1. The Hilbert polynomial of
Ly c(S3,h,stand) is

| (1= )1 = )’
HllbLl,c(Sg,h,Stand)(z) = (1—2)2(1 — zP)

=214 24224+ 422 NA+2+224 42270,

this agrees with the Hilbert polynomial of a module we calculate in Lemma 11.2.19, therefore

that module is irreducible. To calculate characters, we will use the formula
XLi.o(55.0:7)(2) = Xsw 5y (2) D K A (ZP)[Sul-
o

As we have previously calculated the values of K L \(2) we can write the values of K L A (2P)

as follows.
K/\17>\1 (Zp) =1 K>\2,>\1 (Zp) =P+ 2% K)\3,>\1 (Zp) =2
K)\1,>\2 (Zp) = 2F K>\2,>\2 (Zp) =1+ 2% K)\3,>\2 (Zp) = 2P
K)\h)\B (Zp) = 2P K>\27>\3 (Zp) =2+ 2% KA37>\3 (Zp) =1

We also require the character of S®)(h*) which is
X5 5y (2) = Xs(97)(2) - (1 — [stand]2? + [sign]2)
as proven in Corollary 7.2.6. Now

XLy o(Ss.h,triv) (2) = Xg@) (5+)(2) (le,xl (ZP)[Sn] + Ko, (2F)[Ss] + Kag n, (Zp)[5A3]>

= Xs(p)(b*)(z)([triv] + [stand](z” + 2?) + [sign]z?)
= Xs(p)(2) - (1 — [stand]2? + [sign]z2p)([triv] + [stand] (2" + z2p) + [sign]z?’p)
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= Xs(p)(2) - ([triv] — [triv]z? — [triv]z™ + [triv]z™P)
= Xs(p)(2) - (1 = 2%) (1 = 2™7)

XLy,o(S3,b,stand) (2) = X5 () (2) <KA1,A2(ZP)[SA1] + K (27)[Sha] + Kxg xe (zp)[5A3]>

= X5t (h*) (z)([stand] + ([triv] + [sign])2” + [stand]z??)

= Xs(p+)(2) - (1 — [stand]z? + [sign]z °P) ([stand] + ([triv] + [sign])z” + [stand]z
= Xs(p+)(2) - ([stand] — [stand]2” — [stand]z 3 4 [stand]zP)

= Xs(p+)(2) - [stand]( 1—2P)(1 - 2%)

XLlyc(Sg,h,sign)(Z) = Xs(p)(h*)(z) <K)\1,>\3 (Zp)[SM] + K>\2,)\3 (Zp)[SAQ] + K>\3,)\3 (Zp)[S)\s]>

= X5 (5°) z)([sign] + [stand](z? + 2?) + [triv]z™P)

=g h*)(z ([sign] — [sign]z2p — [sign]zgp + [sign]z5p)

= Xs(y)(2) - [sign](1 — z%)(1 - 2°F)

and these results are summarised in Theorem 11.0.1.

5.4 The polynomazial representation of the type A, _1 rational

Cherednik algebra in characteristic p | n, Sheela Devadas and
Yi Sun. Communications in Algebra (2016) [DeSul6]

This paper of Sheela Devadas and Yi Sun examines the characteristic p representation theory
of rational Cherednik algebras of type A,_; in the case that p | n and 7 = triv. This is
relevant for us in the cases (n,p) = (2,2) and (n,p) = (3, 3).

The notation used by the authors matches our notation for the majority of objects ex-
cept t = h and Hy(Sn,h) = Hp(h). However this paper focuses only on the t = 1 case.
Additionally, the bars over the elements of h* are omitted so we must identify x; = T; in
their work. The authors denote by A the polynomial algebra S(h*) which is isomorphic to

the Verma module My (S, b, triv). The authors define a formal power series

- £ () (o)

for i € {1,...,n — 1} and binomial coefficients () = C(C_l)";q(ﬁ_mH)

series 7(z) the authors denote by [2!]r(z) the coefficient of 2! in r(z). Let f; denote the

. For a formal power
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coefficients of zP in Fj(z), that is f; = [2P]F;(z) for i € {1,...,n — 1}.

Theorem 5.4.1 ([DeSul6], Theorem 4.1). For generic ¢, the polynomials fi,..., fn—1 are

linearly independent and generate the mazximal proper graded submodule of My .(Sy, b, triv).

The irreducible quotient Ly o(triv) = M (triv)/(f1,..., fu—1) is a complete intersection
with Hilbert polynomial
HZlbLLc(triv)(z) = < 1_ 2 ) :
In other words, fi,..., fn—1 are the singular vectors of M (triv) and are as linearly

independent as possible. Since f; has degree p for all i, we can conclude that when p | n and
for generic ¢, the irreducible module Ly .(Sy, b, triv) is the quotient of M .(Sy, b, triv) by
n — 1 singular vectors, all of degree p. This means that when n = p = 2 there is one singular
vector of degree 2, which agrees with our result Proposition 6.2.1. When n = p = 3 there
are two singular vectors both of degree 3, which agrees with our result Lemma 9.2.1. We
will calculate these singular vectors below, noting that we have x7 + 73 + - - - + 7T, = 0 in the
rational Cherednik algebra and its induced Verma modules.

When n = p = 2 there is one power series to consider,

Fi(2) = - _1W ((g) + <f) (1 - Z12)(1 — 732) — 1)>

S (1 + c(T1a27” — (a:1+562)2)>

1—712
= 1 (1 + C$11‘22’2)
1—772 '
The expression 1_7%2 is the geometric series (14 Z1z + Z122? + - -+ ). Therefore
fi = [ZAFi(z) = [#?] ! (1 + cz1732?)
1 -7z

= [22)(1 + 1z + T122%) (1 + 1 722?)

= le + crixo.

Since we have Z1 + T3 = 0 and the characteristic is 2, this simplifies as f; = (¢ + 1)z72. This
vector is zero when ¢ = 1 but for generic values of ¢ the vector is nonzero and agrees with

the singular vector we find for generic ¢ in Proposition 6.2.1, up to a nonzero scalar.

When n = p = 3 we calculate the following.

fr =[°]Fi(2)

= 2% —15512 <<S> n (;) (1 —Z72)(1 — T22)(1 — T32) — 1)

66




Chapter 5. Survey of Related Work

+ <§) (1 — 712)(1 — T32)(1 — T32) — 1)2>

. 1 .
=[] T~ (1 +c(— @1+ 72+ 73)2 + (T1T3 + T173 + Tax3)2” — T1T2T32" )
-1

c(e—1)
2

( — (T1 + T2 + 73) 2 + (Tix2 + T173 + 962£U3)Z2 — $1$2$323)2>

= [23}(1 +T1z 4+ 7220 + :T1323) (1 + c(T172 + T1x3 + 1:2:63)22 - cx1x2x3z3)

= Tl3 + ¢T1(T1Z2 + T1T3 + TaT3) — CT1T2T3

Making the substitution Z3 = —Z7 — T3 this simplifies to f; = (1 — ¢)#1> and by symmetry
we can also conclude fo = (1 — ¢)Z3°. Once again, f; and fo are zero when ¢ = 1, but for
generic values of ¢ this is not the case and these vectors are scalar multiples of the singular

vectors we find for generic ¢ in Lemma 9.2.1.

5.5 The Hilbert Series of the Irreducible Quotient of the

Polynomial Representation of the Rational Cherednik
Algebra of Type A,_1 in Characteristic p for p | n — 1,
Merrick Cai and Daniil Kalinov. Journal of Algebra and Its Applications (2021)
[CaKa21]

In this paper, Merrick Cai and Daniil Kalinov study the rational Cherednik algebra of type
Ap_1, that is is Hy(Sy, ), and its representation theory in characteristic p | n — 1. This

only coincides with our work for (n,p) = (3,2).

Theorem 5.5.1 ([CaKa2l], Theorem 2.11). The Hilbert polynomial of Lo .(Sy, b, triv) when
p=21s
HilbLo’c(Smwriv)(Z) =142)04+(n—-2)z+ 22).

The above theorem shows that the Hilbert polynomial of Lg.(triv) for H;.(S3,h) in

characteristic 2 is
Hilbz, (s, periv)(2) = (14 2)(1 + 24 2%) =1+ 22 4 227 + 2°
which matches the result we prove in Lemma 8.1.2.

Theorem 5.5.2 ([CaKa2l1], Theorem 3.17). The Hilbert polynomial of Ly .(Sy, b, triv) when
p=21s
Hilbr, (5,600 (2) = (1 +22) (1 + 2)" 1 (1 + (n = 2)2° + 2%),

or alternatively,
HilbLlyc(Sn,h,triv)(z) =1+ Z)n_l(l +(n— 1)22 +(n— 1)Z4 + 26')
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The above theorem shows that the Hilbert polynomial of L; .(triv) for H;.(S3,bh) in

characteristic 2 is
Hilbr, (S5,0,tziv)(2) = (142)2(14222 4224 +20) = 142243224423 4424 +42° +32° 4227 + 28

which matches the result we prove in Lemma 8.2.2.

5.6 Category O for rational Cherednik algebras

H,;.(GLx(Fp), ) in characteristic p, Martina Balagovi¢ and
Harrison Chen. Journal of Pure and Applied Algebra (2013) [BaChl13b]

This paper is the sequel to “Representations of Rational Cherednik Algebras in Positive
Characteristic” ([BaChl3al), in which Martina Balagovi¢ and Harrison Chen examine the
representation theory of a rational Cherednik algebra arising from a finite group of Lie type.
Although this does not overlap with our work, they do consider a very similar problem and

so we thought it worthy of mention.

5.7 Cherednik algebras and Hilbert schemes in characteristic
P, Roman Bezrukavnikov, Michael Finkelberg and Victor Ginzburg.
Representation Theory (2006) [BFGO06]

This paper of Roman Bezrukavnikov, Michael Finkelberg and Victor Ginzburg relates to our
work as it examines the positive characteristic representation theory of rational Cherednik
algebras of type A,_1. However, their approach is geometric and they answer different
questions than we do. Their results do appear in more closely related work, for example see
[DeSal4], proof of Proposition 4.2.

5.8 On The Smoothness Of Centres Of Rational Cherednik

Algebras In Positive Characteristic, Gwyn Bellamy and Maurizio
Martino. Glasgow Mathematical Journal (2013) [BeMal3]

In their work, Gwyn Bellamy and Maurizio Martino examine the representation theory of
restricted rational Cherednik algebras, which are finite-dimensional quotients of rational
Cherednik algebras. In particular, they describe the blocks of the restricted rational Chered-

nik algebra in positive characteristic.
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Irreducible Representations of

H; (S2,bh)

Our group is S2 = {e, s} where s = (12) is a transposition. We have V' = spani{y1,y2} and
h = spang{y; — y2}. Furthermore, V* = span, {x1, z2} and the quotient h* = V*/(x; + x2) is
a sign representation of Sy with basis {77}.

In characteristic p 1 2, that is for all p > 3, we can realise h* as a subrepresentation of V*
through the map 7« : h* — V* defined in Proposition 3.2.2. On the basis of h* this map is
m(ZT1) = 21 — % = Z(z1 — z2) which gives the basis of h* realised as a subrepresentation of

V*. For notational convenience, let {x} be the basis of h* where the variable x is defined by

T when p = 2,
xr =
$(z1—x2) when p > 3.

Hence S(h*) is the polynomial algebra in one variable klz]. Let 7 € S5 be an irreducible
representation in characteristic p with basis {v}. The Verma module M; () is isomorphic
to k[z] ® T with basis {z! @ v | i =0,1,2,...}. The quotient of M; .(7) by any vector z* ® v
leaves a finite-dimensional module with basis {1®v, z®@v, 22®v, ..., 2" 1 ®@v} and everything
of degree k and higher is annihilated. Therefore to calculate the irreducible modules Ly .(7)
we only need to find one singular vector with minimal degree, as any other singular vectors
will be contained in a submodule generated by singular vectors of smaller degree.

A singular vector 2* @ v € My .(7) must satisfy Dy(z* ® v) = 0 for all y € h; however b is
1-dimensional so it suffices to check this for y = y1 — y2 only. The Dunkl operator is given

explicitly by the formula

Dy, —y, (xk ®v) = 0y, —ys (xk) RV — (s, Y1 — Y2)————— @ S.0.
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We have a; = T1 — T3 for s = (12), therefore oy = 277 because 71 + T3 = 0. An issue arises

when considering oy in characteristic 2, as described in the following remark.

Remark 6.0.1. When p = 2, the symmetric group S does not satisfy Definition 1.1.6 of a
reflection group. In particular, Sy is generated by the transposition s = (12) but the rank
of 1 — s on b is 0, not 1. However, we may still carry out the procedure of finding singular
vectors with these parameters and, at least when ¢t = 1, the results align with the work of
Devadas and Sun [DeSul6] on rational Cherednik algebras in characteristic p | n, as detailed
in Section 5.4. We shall still write agy = 2z because (y; —y2, as) = 2 so this coefficient cancels

in the expression for the Dunkl operator.

The partial derivative d, ,, (z*) behaves as an ordinary derivative, since (y; —yo, ) = 1.

We will also write x,(s)v for s.v. Putting these values into the Dunkl operator, we get

i B i B ok — 5.2t
Dy, —yo (27 @ v) = 10y, —y, (z7) @ v — 2 o0 ® X (s)v
=tha" 1 @uv—exr(s) (1 — (-D)H* oo
= (tk— (1 - (—1)k)cxf(s))$k_1 Qv (6.0.2)

and we are interested in the smallest positive integer k£ for which this expression equals 0.

Theorem 6.0.3. The characters and Hilbert polynomials of the irreducible representation
L (1) of the rational Cherednik algebra Hy.(S2,b), for any p, t, ¢ and T, are given by the

following tables. In all cases, the singular vector is known.

Characters:

p= T =triv
t=0, allc [triv]
t=1, all ¢ | [triv] + [triv]z
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tions of Hy (S2,h)

p>2 T =triv
t=0,c=0 [triv]
t=0,c#0 [triv] + [sign]z
1— 2% 1— 2%
t=1,¢c¢F, [triv] N _222 + [sign]z(1 - ; )
t=1 ) _
’ 1— c+p+1 1— 2¢+p—1
0<ec<p/2 | [triv] 12_ 2t [sign]z(lizg)
t=1, 1 — 2c—p+l 2(1 — 22p1)
p/2 <c<p | [triv] T + [sign] .
p>2 T =sign
t=0,c=0 [sign]
t=0,c#0 [sign] + [triv]z
1— 2% 1— 2%
t=1,c¢F, [sign] 0 _222 + [triv]z( — ; )
t=1 —9 _ _
’ . 1—2 c+p+1 ) Z(l — 2c+p 1)
0<c<p/2 | [sign] e + [triv] T
t=1, 1 — y—2c+3p+l 2(1 — 2 2et8p-1)
p/2<c<p [31gn]ﬁ + [triv] 2
Hilbert polynomials:
p=2 T =triv
t=0, all c 1
t=1, allc 1+ 2
p>2 T =triv p>2 T = sign
t=0,c=0 1 t=0,c=0 1
t=0,c#0 1+ =2 t=0,c#0 1+2
1 22p _ 1— 22
t=1,c¢F, T t=1,c¢F, T
t=1 2 t= 1; —2c+
’ 1 — z%ctp 1 —z72ctp
0<ec<p/2
0<ec<p/2 T <c<p/ 1—>
P=1 g e /2t<: R i
p/2<c<p T p c<p -2
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The remainder of this chapter is a proof of Theorem 6.0.3, divided into sections by case.

6.1 t=0

In this section we describe the irreducible modules for the rational Cherednik algebra Hy .(S2, b).
When ¢ = 0 the irreducible module Loo(7) has character xr, .y = [7] as described in
Proposition 2.6.11. Therefore when ¢t = 0 we only need consider ¢ # 0, and all nonzero ¢ have
the same generic behaviour.

p=2

When p = 2, there is one irreducible representation of Ss so we fix 7 = triv and calculate
the irreducible module Lg .(triv). We therefore seek singular vectors in the Verma module
M, (triv) = k(z].

Proposition 6.1.1. When p = 2, the singular vector of smallest degree in My (triv) is z.

Proof. The value of Dy, _, (x%) at t = 0 is Dy,_y, (2¥) = —c(1 = (=1)*)2F~L. When k = 1
this expression reads —2c¢ which is zero in characteristic 2. By definition, singular vectors in

My o(triv) must have strictly positive degree therefore this is the smallest. O

Proposition 6.1.2. When p = 2, the character of Lo .(triv) is

XLo,c(triv) (z) = [tI‘iV] :

Proof. The quotient of My (triv) = k[z] by (x), the submodule generated by the singular
vector x, is 1-dimensional with basis {1}. The group Sy acts trivially on constants, therefore

the character of the irreducible module is [triv]. O
Corollary 6.1.3. When p =2, the Hilbert polynomial of Lo .(triv) is 1.

Proof. This follows from the previous proposition, as the dimension of [triv] is 1. O

p>3

When p > 3 there are two irreducible representations of So which are 7 = triv and 7 = sign.
However, by Corollary 2.8.3 the character of L;.(sign) can be derived from the character of

L; _.(triv) through multiplication by [sign].

Proposition 6.1.4. When p > 3 and ¢ # 0, the singular vector of smallest degree in
My (triv) is 2.

Proof. We have Dy, _y,(2%) = —c(1 — (=1)*))2F~1. When k = 1 this expression reads —2c

which is nonzero in characteristic p > 3, therefore x is not a singular vector. However, when
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k = 2 this expression reads —c(1 — (—1)?)z = 0, therefore 22 is the singular vector of smallest
degree in My .(triv). O

Proposition 6.1.5. When p > 3 and ¢ # 0, the character of Lo (triv) is
XLo,c(triv) (Z) = [tI‘iV] + [sign]z.

Proof. The quotient of My.(triv) = k[z] by (2?), the submodule generated by the

2

singular vector z*, is 2-dimensional with basis {1,z}. By Proposition 6.1.4, x is not

singular, therefore this quotient is irreducible because it does not contain and singular vectors
hence has no proper submodules. The group Sy acts trivially on constants, and x spans a
sign representation of S in degree 1, therefore the character of this irreducible quotient is
[triv] + [sign]z. O

Corollary 6.1.6. When p > 3 and ¢ # 0, the Hilbert polynomial of Lo .(triv) is

HilbL()’C(triv) (2) =1+ z.

Proof. This follows from the previous proposition, as triv and sign are both 1-dimensional.
O

Proposition 6.1.7. When p > 3 and c¢ # 0, the character of Lo (sign) is
XLo . (sign)(?) = [sign] + [triv]z.

Proof. We have xr, _(triv) = X Lo, _(triv) because all nonzero ¢ behave generically equivalent.

Now

XLo,c(sign) (Z) = XLO,_c(triv)(Z) : [Sign]
= ([triv] + [sign]z) - [sign]
= [triv ® sign] + [sign ® sign|z

= [sign] + [triv]z.

Corollary 6.1.8. When p > 3 and ¢ # 0, the Hilbert polynomial of Lo (sign) is

HilbLo,C(sign)(z) =14z
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6.2 t=1

p=2
We fix 7 = triv as this is the only irreducible representation of So when p = 2.

Proposition 6.2.1. When p = 2, the singular vector of smallest degree in M (triv) is z2,

for all c € k.

Proof. We have Dy, _y,(z¥) = (k — ¢(1 — (=1)¥))2*~'. When k = 1 this reads 1 — 2c which
is nonzero in characteristic 2, therefore x is not a singular vector. When k = 2 this reads
(2—c(1—(—1)?))z = 22 = 0 in characteristic 2, therefore 2 is the singular vector of smallest
degree in M .(S2,b, triv). O

Corollary 6.2.2. When p =2, all ¢ are generic in M ((triv).

Proof. The singular vector 2 does not depend on c¢. The only possible values of ¢ which

could be special are ¢ = 0 and ¢ = 1 but neither of these values make x a singular vector. [

Proposition 6.2.3. When p = 2, the character of Ly .(triv) is

XL170(527h,triv)(z) = [triv] + [triv]z
for all c € k.

Proof. The quotient of M .(triv) = k[z] by (2?) is 2-dimensional with basis {1,z}. The
group So acts trivially on constants, and x spans a triv representation of So in degree 1,

therefore the character of the irreducible module is [triv] + [triv]z. O

Corollary 6.2.4. When p = 2, the Hilbert polynomial of Ly .(triv) is
HilbLl’c(triv)(z) =14+z

for all c € k.

p>3

When ¢ = 0 the singular vector of M; (1) is 2P ® v for any v € 7 as explained in Proposition
2.6.13 and this matches the result stated in Theorem 6.0.3. We therefore suppose ¢ # 0
and determine singular vectors in M; .(7) when p > 3. We first consider 7 = triv and can
afterwards derive the solution for sign. We know that 2%” is singular for all ¢ because o9 = 2
is an So-invariant so its pt" power is singular. We can also see that when k = 2p the Dunkl
operator in (6.0.2) is equal to zero and does not depend on c. We are therefore interested in

the question of existence of any singular vectors of degree strictly less than 2p.
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Proposition 6.2.5. When p > 3, if k < 2p and 2* is singular in My .(triv) then k is odd.

Proof. Let z* be singular with 0 < k < 2p, s0 Dy, _y,(z%) = (k — ¢(1 — (=1)F))2z*~1 = 0.
Suppose k is even, then this expression reads k2z*~! = 0 which only holds if p | k. As
0 < k < 2p we must have k = p which is a contradiction, therefore & is odd. ]

Proposition 6.2.6. For ¢ € k, if 2% is singular in M .(triv) with degree k < 2p, then
ce{0,1,...,p—1} and
2ce+p if0<c<p/2,

2e—p ifp/2<c<p.

Proof. By the previous proposition, if ¥ is singular with & < 2p then k is odd. For odd
k, the Dunkl operator reads Dy, _y,(z*) = (k — 2c)2*~1. Therefore when k is odd, z* is
singular if and only if k¥ — 2¢ = 0 when considered as an equation over k. This equation can
only be satisfied for values of ¢ where ¢ = 271k and since k is an integer, we conclude that
ce {0,1,...,p—1}. When k — 2¢ = 0 we may write this as an equation in the integers,
k = 2c + mp for some integer m. We want k < 2p to be the smallest positive odd integer
which satisfies this condition. If 0 < ¢ < p/2 then 2¢ < p and the smallest odd positive
integer solution to k = 2c +mp is k = 2¢ 4+ p. However, if p/2 < ¢ < p then 2¢ > p and

k = 2c — p is the smallest odd positive integer solution. ]

The preceeding proposition shows that the only special values of ¢ € k for M; .(triv) are
those ¢ € I, and this agrees with Proposition 5.2.1 ([Lil4], Theorem 2.8), which says that

any values of ¢ ¢ I}, are generic.
Proposition 6.2.7. The character of L1 .(triv) for generic c is

XLy . (triv)(2) = [triv] + [sign]z + [triv]z? + - + [sign]z?P 1.

Proof. The previous propositions show that the only time we have singular vectors in degree
less than 2p is for particular values of c¢. However for all other ¢, 2?P is generically the
singular vector of smallest degree, therefore the irreducible module L .(triv) is the baby
Verma module Ny (triv) for generic ¢. The character of this module alternates between
triv in even degree and sign in odd degree, and stops in degree 2p — 1 because z?P is a

singular vector for all c. O
Corollary 6.2.8. The Hilbert polynomial of Ly (triv) for generic c is

Hl‘lbLLC(triv)(z) =14 a4 224 2]

Proposition 6.2.9. The character of L1 .(triv) for c € F), is

XLi.o(triv) (2) = [triv] + [sign]z + [triv]z? +--- + [sign]z* !
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where
2c+p if0<c<p/2,

2ce—p ifp/2<c<p.
Proof. The Verma module M; .(triv) alternates between triv in even degree and sign in

odd degree. The irreducible quotient stops in degree k—1 where k is the degree of the singular

vector described in Proposition 6.2.6. O

Corollary 6.2.10. The Hilbert polynomial of L1 c(triv) for c € F) is
Hilby, (srivy(2) =1+ 2+ 22+ 42!
where
2c+p if0<e<p/2,
2e—p ifp/2<c<p.

We can obtain results for 7 = sign by considering Corollary 2.8.3 with XLl,c(sign)(Z) =

XLl,,c(triv)(Z) - [sign].
Proposition 6.2.11. The character of Ly .(sign) for generic c is
XL (sign)(?) = [sign] + [triv]z + [sign]z? + - - + [triv]z?P~L
Corollary 6.2.12. The Hilbert polynomial of L1 .(sign) for generic c is
Hilbr, (sign)(2) =142 42>+ 42771

Proposition 6.2.13. The character of Ly .(sign) for c € F,, is

2

XLl,C(triv)(Z) = [sign| + [triv]z + [sign]z“ + - - + [s,ign]zk_1

where

L —2c+p if0<c<p/2,
—2c+3p ifp/2 <c<p.

Proof. The character of the Verma module M (sign) alternates between sign in even degree
and triv in odd degree. The singular vector of M; .(sign) has the same degree as the singular
vector of My _.(triv). Let ¢ € {0,1,...,p—1}. If ¢ = 0 then —¢ =0 € {0,1,...,p — 1}
and by Proposition 6.2.9 the character is as stated since 2¢ + p = —2c + p. If ¢ # 0 then
—c=p—ce{l,...,p— 1}, and for p — ¢ in the range 0 < p — ¢ < p/2 rearranging gives
p/2 < ¢ < p, while for p — ¢ in the range p/2 < p — ¢ < p rearranging gives 0 < ¢ < p/2.
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Substituting p — ¢ into the appropriate formula from Proposition 6.2.9 we get

2p—c)+p if0<p—c<p/2,
2p—c)—p fp/2<p—c<p,

k:

which simplifies to

L —2c+p if0<c<p/2,
—2c+3p ifp/2<e<np.

Corollary 6.2.14. The Hilbert polynomial of Ly (sign) for c € F, is

Hilby, (orin)(2) = 1+ 2+ 2% 4 - 4 2571

where
—2c+p if0<c<p/2,

—2c+3p ifp/2 <c<p.
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Chapter 7

Bases for the Verma Modules
Mt,c(S?n b, T)

For the rest of the thesis, we fix n = 3. In order to do explicit computations with Verma

modules, we will need to fix a basis for S(h*).

7.1 Choices of basis in h*

In any characteristic we can use {Z1, T2} as a basis for h*. We also have an element 73 € h*

which satisfies 77 + 73 + T3 = 0.

In characteristic p # 3, the standard representation stand is irreducible and isomorphic

to b*, and we also use {71,732} as its basis.

In characteristic p > 3, in order to exploit some additional symmetries and reduce the
number of computations we need to do, it is convenient to use a basis which is well-behaved
when restricting from S3 to S = {e,(12)}. As explained in Section 3.2, when p { n we
can realise h* as a subrepresentation of V* consisting of all a1x1 + aszs + asxs € V* with

a1 + a2 + az = 0. Now we define the rescaled Young basis of h* by

b+ =z + x93 — 223,

b =21 — x9.

Let s; denote the simple transposition (i,7 + 1). The basis {b4,b_} of h* satisfies:

2 1
s1.by = by s1.b = —b_ b_ = 3 (82 + 2e> by,

which shows it is a rescaling of the usual Young basis (by a factor of 1/2 and 1/3).
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7.2 Verma modules, their bases and characters

We will need the following combinatorial lemma.

Lemma 7.2.1. For any k € Ny the number of non-negative integral solutions (a,b) € N2 to

the equation 2a + 3b = k equals

]

53 +1 & odd

ol

J +1 k even,

Ea
[=]

Proof. We will parametrise the solutions for later use. First assume k = 2k’ is even for some
k" € Ng. The equation 2a + 3b = k then becomes

2a + 3b = 2K’
so b is even. Write b = 25 for some j > 0. The equation then becomes
a=Fk —3j

which gives another condition j < %, So, the set of solutions {(a,b)} is parametrised as

k k
= —35,2j)lo<j<=
{<2 g ‘7>‘ _3_6}

and their total number is L%J + 1
Now assume k = 2k’ 4+ 1 is odd. The equation 2a + 3b = k then becomes

2a+3b =2k +1
so b is odd. Write b = 25 4+ 1 for some j > 0. The equation then becomes
a=k —1-3j

which gives another condition j < % So, the set of solutions {(a,b)} is parametrised as

k k—3
L 1-35.2j+1 <j< P9
{<2 3J,J+>\0_J_ G }

and their total number is [5z2] + 1. O
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p>3

Recall that o9,...,0, are symmetric polynomials which generate the algebra of invariants

S(b*)% in characteristic p { n, as outlined in Proposition 3.3.12.

Theorem 7.2.2. In characteristicp > 3, Mt’fc(triv) >~ Sk(b*) is a direct sum of the following

irreducible Ss representations:

o for every a,b € Ny satisfying 2a + 3b = k, a subrepresentation isomorphic to triv with

a basis

{Ugog};

o for every a,b € Ny satisfying 2a + 3b = k — 1, a subrepresentation isomorphic to stand
with a basis

{o50%5by, oSobb_};

e for every a,b € Ny satisfying 2a + 3b = k — 2, a subrepresentation isomorphic to stand

with a basis
a b 2 2 a b
{0'20'3(_b+ +3b_)7 O'20'3(2b+b_)}

o for every a,b € Ny satisfying 2a + 3b = k — 3, a subrepresentation isomorphic to sign

with a basis
{0505}
where ¢ = (x1 — x2)(z1 — x3)(x2 — x3) is the Vandermonde polynomial.

Proof. The S5 representation S*(h*) is a direct sum of its isotypic components, so it is enough
to show that the above vectors are in the correct isotypic components and are a basis.

The space of invariants in S(h*) is the polynomial algebra in o2 and o3 (see Proposition
3.3.12). Closely related to the symmetric polynomials are the antisymmetric polynomials,
f € S(h*) which transform as the sign representation. By considering each transposition in
turn and writing out (ij).f = —f, one sees that f is divisible by x; — x; for all ¢ # j, and
consequently that f is divisible by the Vandermonde polynomial ¢ = [T, j(asz- — xj). It then
quickly follows that any antisymmetric polynomial f is of the form f = ¢ - f/, where f’ is a
symmetric polynomial.

One can check directly that for every choice of a,b the span of {U§a§b+, agagb_} is
an S3 subrepresentation isomorphic to stand with the isomorphism given by b1 +— agagbi,
and that for every choice of a,b the span of {og05(—b% + 3b%), 0$03(2b1b_)} is an S5
subrepresentation isomorphic to stand with the isomorphism given by b +— Jgag(—bi +3b%),
b_ > 08ab(2b1b ).

Next, let us show that the set

{oSabby, 0%05b_ |2a+3b=Fk—1}U {Ugag(fbi +3b%), 0%05(2b,b_) | 2a+3b =k — 2}
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is linearly independent. Assume a nontrivial linear combination of these vectors is zero.

Gathering the terms, this can be written as
froby 4 fo-b 4 f3- (0L +3b2) + f1-2b4b_ =0,

where fi, fo are symmetric polynomials of degree k — 1, f3, f4 are symmetric polynomials of
degree k — 2, and f1, f2, f3, f1 are not all zero. Recall that by and (—b3 + 3b?) are fixed by
s1, while the action of s; on b_ and 2b,b_ is multiplication by —1. If f5, f4 are not both
zero, let us apply the projection %(id — 51) to get

fob_+ f1-2byb_=0.
If f5, f4 are both zero, the expression is
fiobe+ f3- (=bL +3b%) =0,
which after applying % (32 + %id) becomes
fi-b—+ f3-2b4b_ = 0.
So, in either case we can assume we have a linear combination
farbo+ fa-2b4b =0
with fo, f4 symmetric and not both zero. Dividing by b_ we get
Jo=—f1-2by,

which is an equality between a symmetric polynomial and a polynomial which is not sym-
metric, so it only holds if fa, f4 are both zero. This is a contradiction, and we conclude that
the set

{o805by, o50bb_ | 2a+3b =k — 1} U {o505(—b% + 3b%), 0505(2b1b-) | 2a + 3b = k — 2}

is linearly independent.

We have now seen that the vectors from the statement of the theorem lie in the correct

isotypic components and are linearly independent. Their number is equal to

number of vectors = ‘{(a, b) € N2 | 2a+3b= k}‘ —|—2|{(a, b) N2 |2a+3b=Fk— 1}’—|—
+2|{(a,b) € N§ | 2a+3b =k — 2}| + |{(a,b) € NG | 2a + 3b = k — 3}|.
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By Lemma 7.2.1, if k is even, this is equal to

mummrofwmuns::{zJ4—1+2<{k;;4J+4>_+2<{k;;2J+J>_+{k;;§J+l
()
(i

= k4 1 = dim S*(p*).

If k£ is odd, then by Lemma 7.2.1

mmmmwﬂwwmm::{kggJ+1+Q<{k_1J+1>+2<{kg5J+J>_+{kg3J+1
- (|5 [ [))
s

= k41 = dim S*(p*).

GJ

So, the vectors in the statement of the theorem are a linearly independent set of size equal

to the dimension of the vector space, so they are a basis. ]

We wish to find nice bases of Verma modules to work with, which are compatible with
their decomposition as S35 representations, and in which we can reasonably compute Dunkl
operators. For 7 = triv, we have M, .(triv) = S(h*)®triv = S(h*) as an S3 representation,
so Theorem 7.2.2 gives us such a basis. A similar computation works when 7 = sign. For
T = stand, we have M; .(stand) = S(h*) ® stand as an S3 representation, so we need to
understand how the above basis of S(h*) behaves after taking a tensor product with stand.

The following lemma is a standard exercise in representations of finite groups.
Lemma 7.2.3. Let p > 3. As S representations,
1. triv ® stand = stand tautologically;

2. sign ® stand = stand with the isomorphism given by

1sign ® b+ — —3b_, 1sign Rb_ — b+;

3. stand ® stand = triv @ sign @ stand; with a compatible basis given by

e by ®by 4+ 3b_ ®b_, spanning a subrepresentation isomorphic to triv;

o —b_®by +by ®b_, spanning a subrepresentation isomorphic to sign;
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o b, by +3b_®b_, b_Rbr +br ®b_ spanning a subrepresentation isomorphic
+ @bt + 104 g

to stand, with the isomorphism given by

b+f—)—b+®b++3b_®b_, b_'—>b+®b_+b_®b+.

Proof. (1) is tautologically true and requires no proof.

For (2), a map of representations sign ® stand — stand sends each element of the basis
{lsign ® b4, lgign ® b_} of the domain to some linear combination of the basis {b4, b_} of
the codomain, and commutes with the action of S3. Considering the restricted action of So
it is clear that lsjgn @ by = Ab_ and lgign ® b +— Bb, for some constants A, B € k. Now

(23)-(Lsign ©® b-) = ((23)-1s1gn) ® ((23).0-)

by +0b_
= _1sign® <—|—2>

—1
= 7(1sign & b+ + 1sign b2y b,)

This implies

(Ab_ + Bby)

(23).Bby = B<_b++36—> - -1

2 2

hence A = —3B as claimed.

As for (3), given a finite group G, a vector space W over an algebraically closed field k of
characteristic p 1 |G|, a representation p : G — End(W), and an irreducible representation
TE @, the projection to the 7 isotypic component of p is given by the map

dim 7

T W= W, = T > x-(9)n(g).

geG

Therefore the projection to the triv isotypic component of stand ® stand is given by the
map
1
Toes = ¢ (e + (12) + (13) + (23) + (123) + (132)),

the projection to the sign isotypic component of stand ® stand is given by the map
1
Tsign = 6(e —(12) — (13) — (23) + (123) + (132)),
and the projection to the stand isotypic component of stand ® stand is given by the map

Tstand —

(2-e—(123) — (132)).

Wl
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The matrices for the action of S5 on stand ® stand are given by

b @by

o O O

@) =]

(123)] = §

b @by

3= 4| 3

84

b+®b,

b_®b_

= o O

b_®b_

—_ = =

b_®b_

—_ = =

by @b
b_®b
by @b_
b_®b_

bt @by
b_ @by
by ®b_
b_®b_

by @by
b_®by
bt ®b_
b_®b_

bt ®by
b_ @by
by ®b_
b_®b_

by @by
b_@b
by @b
b_®b_
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Therefore the projection m¢riy can be written as the matrix

by®by b ®by bi®b_ b ®b_

3 0 0 1 by ®by
1
[Wtriv] — 6 0 0 0 0 b_®by
0 0 0 0 | byob
9 0 0 3 b_®b_

hence the triv isotypic component of stand ® stand is spanned by by ® by + 3b_ ® b_.

Similarly, the projection msig, can be written as the matrix

br®by  b_®byr  bi®b— b_Qb_

0 0 0 0 7 brobs
1 —
[Wsign] — 6 0 3 3 0 b_®by
0 -3 3 0 | biob_
0 0 0 b_®b_

hence the sign isotypic component of stand ® stand is spanned by —b_ ® by + b ® b_.

Finally, the projection mstang can be written as the matrix

bi®by b_®by bi®b_  b_®b_

1 0 0 —1/37 broby
1
[Tstand] = 3 0 1 1 0 b_®by
0 1 1 0 by ®b_
-3 0 0 1 b_®b_

hence the stand isotypic component of stand ® stand is spanned by —b; ® by + 3b_ ® b_
and b_®b++b+®b_. O

Now by putting together Theorem 7.2.2 and Lemma 7.2.3 we immediately get the following
theorem.

Theorem 7.2.4. In characteristic p > 3, Mt]fc(stand) ~ S¥(h*) ® stand is a direct sum of

the following irreducible Ss representations:

o for every a,b € Ny satisfying 2a+3b = k, a subrepresentation isomorphic to stand with

a basis

[o30h @by, ofoh @b}
o for every a,b € Ny satisfying 2a + 3b = k — 3, a subrepresentation isomorphic to stand
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with a basis

{qgo8oh @b, — -qofol @by}

3

o for every a,b € Ny satisfying 2a + 3b = k — 1, a subrepresentation isomorphic to triv
with a basis
{0505 - (b+ @by +3b- @b_)};

o for every a,b € Ny satisfying 2a + 3b = k — 1, a subrepresentation isomorphic to sign
with a basis
{0505 - (=b- @by +by @b_)};

o for every a,b € Ny satisfying 2a + 3b =k — 1, a subrepresentation isomorphic to stand

with a basis

{0508 - (—by @by +3b_®@b_), 0505 (b- @by +by @b )};

e for every a,b € Ny satisfying 2a + 3b = k — 2, a subrepresentation isomorphic to triv
with a basis
{0505 - (b3 +3b%) @by + 3+ (2bb_) @b_)}.

e for every a,b € Ny satisfying 2a + 3b = k — 2, a subrepresentation isomorphic to sign
with a basis
{0508 - (—(2b4b_) @ by + (b2 +3b%) @ b_)}.

o for every a,b € Ny satisfying 2a + 3b = k — 2, a subrepresentation isomorphic to stand

with a basis

{0505 (—(—bL +3b2) @ by +3(2b:b_) ®b_), o505 ((2b4b_) @ by + (b3 + 3b%) @ b_)}.

Wherever in this statement a basis of stand is given as {u,v}, the map by — u, b— — v is

an Ss isomorphism.
Corollary 7.2.5. Assume p > 3.

1. The character of the graded Ss representation S(h*) is

Xs(p+)(2) = = z2)1(1 ey ([triv] + [stand](z + 22) + [sign]zg) .

2. The characters of Verma modules for Hy .(S3,b) are given by

XMt,c(triv)(Z) = XS(h*)(Z)
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ot tesen (2) = Ty (=) + [sand] (= + 22) + fexiv]<?)

XM, . (stand) (2) = 1= 22)1(1 9 ([stand](1 + 2 + 2% + 2%) + ([triv] + [sign])(z + 2?)).

3. The characters of baby Verma modules for Hy .(Ss,b) are given by

XNo.o(r)(2) = Xt o(r) (2) (1 = 2%)(1 = 2°%).
X (r)(2) = Xtatry (2) (1 = 229) (1 = %),

Proof. Using the decomposition from Theorem 7.2.2 we get

Xs(y)(2) = Z 22030 riv] 4 Z 22aF30+ st and] + Z 2204354 2[stand] + Z 72043043 54 o]

a,b ab ab b
S - 22)1(1 —ay ([briv] + [stand](z + %) + [signl=") .

The characters of Verma modules then follow from M;.(7) = S(h*) ® 7 and Lemma 7.2.3,
and the characters of baby Verma modules follow from the fact that N;.(7) is a quotient of
M o(7) by 0; ® 7 (when t = 0) or by ¢F ® 7 (when ¢ = 1).

O

Recall from Definition 2.6.12 that S®)(h*) is the quotient of S(h*) by the S(h*)-submodule
generated by (x; — ;)P for all 4,5 (or equivalently by b ,0”). It is a finite-dimensional

representation of dimension p?.

Corollary 7.2.6. For p > 3, the character of the graded S3 representation S(p)(f)*) 18

Xs) (5 (2) = Xs(p+)(2) - ([triv] — [stand]2? + [sign]2*)
N (1- 22)1(1 — %) ([triv] + [stand](z + 2*) + [sign]2®) (1 — zP[stand] + 2*"[sign]).

Proof. The character of S®)(h*) is the character of S(h*) minus the character of the S(h*)-
submodule generated by b, 0" .

The vectors bﬁ, b’ span a representation isomorphic to stand with the isomorphism
¢ : stand — span{t’,b” }

given by
p(br) = 0L

By the universal mapping property of the induced module M; (stand), the homomorphism

¢ of S3 representations extends to a homomorphism, also denoted ¢, of graded Hy .(S3,b)
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representations

¢ : My .(stand)[—p] — M; (stand)

defined on the generators as
p(1®by) =tE

where M [k] denotes a grading shift by k& per Definition 2.6.4. The kernel of this map is the
set of all S(h*) multiples of Vv, ® b* — b’ @V € M, (stand)[—p| and it is isomorphic to
M, o(sign)[—2p]. Hence

The result then follows from Corollary 7.2.5, noting that x—x(2) = Fxar(z). O

p=2

In characteristic 2 the rescaled Young basis {b;,b_} does not make sense. Specifically, this
basis relies on restricting the standard representation of S3 to S = {e, s1} and decomposing
it into the trivial and sign representation of S3. This works in characteristics p = 0 and
p > 3, but in characteristic 2 the trivial and the sign representations are isomorphic, and the
standard representation of S3, when restricted to So, becomes an indecomposable extension of
two copies of the trivial representation. Instead, in characteristic 2 we use the basis {71, T2}
of the standard representation, with Ts = Z7 + T3. The elementary symmetric polynomials

in this case are

2, 2
09 =21 +X1T9 + T2

03 = 33712.%'72 + 1'1.%'22.
The analogue of Theorem 7.2.2 in characteristic 2 is the following theorem.

Theorem 7.2.7. In characteristic p = 2, Sk(b*) 18 a direct sum of the following indecomposable

S3 representations:

e for every a € Ny satisfying 2a = k, a subrepresentation isomorphic to triv with a basis
{2"};
e for every a,b € Ny satisfying 2a + 3b = k, b > 0, an indecomposable extension of two
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copies of triv, with a basis
b —a—b—1(=3 | —2—— | 3
{?=03", 2"y (T1” + T1 T2 + 72°) };

o for every a,b € Ny satisfying 2a + 3b = k — 1, a subrepresentation isomorphic to stand
with a basis
{72371, 52"03 73 };
o for every a,b € Ny satisfying 2a + 3b = k — 2, a subrepresentation isomorphic to stand
with a basis

—a—b—2 —a—b—--2
{Ugaa'g I ,Ugaag xI9 }

Proof. 1t is straightforward to check that for every a,b € Ny satisfying 2a + 3b = k the space

b

spanned by 73%53" is a subrepresentation isomorphic to triv. When b > 0, it is extended by

the 1-dimensional space with a basis 072&0731),1(?13 + 71275 + @3), as

s1.(02°030 L@ + T2 T2 + 720)) = 2% N@T + T1oT2 + To0) + 02203
$9.(a2%030 H(T1° + T1°T2 + T2°)) = 0uo30 L@ + T2 + T3°)
=303 (T + 70T + 72°) + 02775

It is also straighforward to check that the space spanned by {72%G3'ZT, 52%63°Z3} is a sub-

representation isomorphic to stand via the isomorphism 7; — 2%53°%; and that the space

spanned by {72%53'7T12,52%03°Z32} is a subrepresentation isomorphic to stand via the iso-

morphism 7; — 2%03°%;2.
The set

{72°53", 720" (T1° + "7 + 72°) | 20 + 3b =k}

is linearly independent, and so is the set
{62%53°71, 52%03°%3 | 2a + 3b = k — 1} U {52%63° 712, 52963 72> | 2a + 3b = k — 2}.

The central element (123) + (132) € k[S3] acts on the span of the first of these sets by 0 and
on the second of them by 1. Since (123) + (132) and e — (123) — (132) act as projections on
the span of their union, and this allows us to conclude that the union of these sets is linearly
independent as well. To show that it is a basis of S¥(h*), and thus conclude that S(h*) is
indeed a direct sum as stated in the theorem, it now suffices to show that the number of
elements in this set and compare it to dim S¥(h*) = k+ 1. This is the exact same calculation
as in the proof of Theorem 7.2.2. ]

Next, we will need an analogue of Lemma 7.2.3. The sign representation is isomorphic

to triv in characteristic 2 and taking tensor products with triv is tautological, so the only
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representation to decompose is the tensor square of stand. This representation turns out to

not be completely reducible in characteristic 2.

Lemma 7.2.8. Let p = 2. As an Ss representation, stand ® stand is a direct sum of the

following indecomposable subrepresentations:
e an indecomposable extension of two copies of triv, with a basis
{72 @71 + 71 ® T3, T @ T1 + T2 ® T1 + T3 ® Tz},
with T1 ® Tg + T3 ® T1 spanning a subrepresentation of this extension;
e a subrepresentation isomorphic to stand with a basis
{FIeT+ 2T +T1® T2, T2 QT2 +T2 @ T1 + 71 ® T2},
with the isomorphism given by T; — T; @ T; + T2 @ T1 + T1 X T3.

Proof. To show that the preceding bases are in a direct sum with each other, we write their
elements in a matrix with respect to the basis {ZT1 ® 71, T2 ® T1, T1 ® Tz, Tz ® Tz} of

stand ® stand.

0110
1111
1 011
01 01

This matrix has determinant 1 and is therefore full rank. Hence the bases are linearly
independent and in a direct sum. To show that they span S5 subrepresentations, we consider
the action of the generators (12) and (23).

(12).(72 @71+ TI @ T2) = Ta @ T1 + T1 @ T
(23).(T2@TT+T1I®T2) =T3 Q71 +T1 RT3
= (T1 + T2) @ T1 + 71 @ (T1 + 72)

=271+ QX2
This shows that To ® T1 + T1 ® T2 spans a copy of triv. Now,

(12).(FIQTI+ T2 @T1 + T2 ®T2) = T3 ¥ T2

A
3
il
5

1® T

I
S
+ o+
&l
® ®
5
+ o+
S
&l

+
8l
&
i
+
5l
b2y
8l

(mod T3 ® T1 + T1 ® T3)

I
5
®
5
+
&l
®
5
_|_
8l
®
&l
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(23).(TIQRTI+ T2 QT+ T2 R T3) =TI QT + T3 QT + T3 ® T3
T1 QT+ (T1 +T2) @T1 + (T1 + 72) @ (T1 + T2)

=T10%1 +21 QT2 +T2 X T2

=T1Q0T1 +22Q0T1 +T2 T2

T T2 QT +T1® T2

Il
8

1T+ T2 @7 + T2 ®T2 (mod Tz T + T1 ® T2).

This shows that T1 ® T1 + T3 ® T1 + T2 ® T spans a copy of triv modulo the previous copy
of triv. To show that this is an indecomposable extension, consider the matrix forms for the
action of (12) and (23) with respect to the basis.

(12) = [; ﬂ

(23)] = [1 1]

01

These matrices are non-diagonalisable, therefore basis consists of an indecomposable

extension of triv by triv.

The action of (12) and (23) on the second basis is easily calculated in matrix form as

(12) - [(1’ (1)]

(23)] = [3 ﬂ

which exactly shows that they span a copy of stand. O

Now by putting together Theorem 7.2.7 and Lemma 7.2.8 we immediately get the following

theorem.

Theorem 7.2.9. In characteristic p = 2, Mfc(stand) >~ S*(h*) @ stand is a direct sum of

the following indecomposable Ss representations:

o for every a € Ny satisfying 2a = k, a subrepresentation isomorphic to stand with a

basis

{02 @71, 72" @ T2}

e for every a,b € Ny satisfying 2a + 3b =k, b > 0, a direct sum of two copies of stand,
with a basis

b o — —aq—b o —
{02903” ® &1, 02703 ® T2}
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of one subrepresentation and a basis

(727 (@ + T2 + T2°) @ 71 + 03 0 13),

75 @+ TR+ 73°) 9T + 03 @ (TT +12)) )
of the other;

o for every a,b € Ny satisfying 2a+3b = k—1, an indecomposable extension of two copies
of triv, with a basis
(T (EF R TR+ T 7))}
of the subrepresentation isomorphic to triv and a basis
([T (T + T T+ T3 © T2)}
of the quotient isomorphic to triv;

o for every a,b € Ny satisfying 2a + 3b = k — 1, a subrepresentation isomorphic to stand

with a basis
(03 (FIRT+ T QT+ T1 @ T2), 0203 (T @ T2 + Ta QT + T1 @ T2) };

o for every a,b € Ny satisfying 2a+3b = k—2, an indecomposable extension of two copies
of triv, with a basis
{72°73" (71" @ T3 + 73 @ 71) }
of the subrepresentation isomorphic to triv and a basis
{7273 (T1° @ T1 + 72 O T1 + T2° ® T2)}
of the quotient isomorphic to triv;

o for every a,b € Ny satisfying 2a + 3b = k — 2, a subrepresentation isomorphic to stand

with a basis
{(72°730 (T2 @ TT + T2° QT + T1° @ T2), 02°03 (Ta° @ Tz + T2 @ T + T1° @ T2) }
Corollary 7.2.10. Assume p = 2.

1. The character of the graded Ss representation S(h*) is

s (2) = 7 22)1(1 5y (1 2)[eri] + (2 + )[stand])
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2. The characters of Verma modules for Hy .(Ss,b) are given by

XM o(triv) (2) = Xs(p+)(2)

XMy o (stand) (2) = - 22)1(1 2 (1 + 2+ 2% + 2%)[stand] + 2(2 + 2°)[triv]).

3. The characters of baby Verma modules for Hy .(Ss,b) are given by

Xo,o(1)(2) = Xt o) (2)(1 = 2%)(1 = 2°).
XNy (1) (%) = Xt o(r) (2) (1 — 22)(1 — 2°P).

Proof. We follow the proof of Corollary 7.2.5. Using the decomposition from Theorem 7.2.7

we get
Xs(r) () =
- Z 2*feriv] + Z Z2a+3b([triv] + [triv]) + Z 22030+ [stand] + Z 2230 2 [stand]
= (1122)[triv} + = 22)1(1 — 5 (z%([triv] + [triv]) + (2 + 2*)[stand)])
= = 22)1(1 ey (1- 23)[triv] + 223[triv] + (2 + 22)[stand])
1

= (1= 21— ) (1 + 2*)[triv] + (2 + 2*)[stand])

The characters of Verma modules then follow from M;.(7) = S(h*) ® 7 and Lemma 7.2.8,
and the characters of baby Verma modules follow from the fact that N;.(7) is a quotient of
M, (1) by o; ® 7 (when ¢t = 0) or by 7;7 ® 7 (when t = 1).

O

93



Chapter 8

Irreducible Representations of
H; -(S3,b) in Characteristic 2

Representation theory of S3 over an algebraically closed field k of characteristic 2 is not
semisimple, and the irreducible representations are the trivial representation triv and the
standard representation stand; the sign representation sign is isomorphic to triv.

Although the permutation representation V' of S3 is semisimple in characteristic 2 and
splits as V' & h @ triv, we will nevertheless consider h* as a quotient of V* rather than realise
it as a submodule. For more details on the structure of these representations, see Section 3.1
and Section 3.2. We work with the spanning set {77, T3, T3} satisfying Z1 + 73 + T3 = 0, and
often choose 71, T3 as a basis of h*. We do this to match the conventions in the literature in
this case.

The aim of this section is to prove the following theorem.

Theorem 8.0.1. The characters and Hilbert polynomials of the irreducible representation
Ly o(T) of the rational Cherednik algebra Hy .(S3) over an algebraically closed field of character-

istic 2, for any t, c and T, are given by the following tables.

Characters:
pP=2 T = triv
t=0,c=0 [triv]
t=0,c#0 [triv] + [stand](z + 22) + [triv]z3
t=1, c¢Fy | ([triv] + [stand|z + [triv]z?)([triv] + [stand]z? + [stand]z? + [triv]2®)
t=1,¢=0 [triv] 4 [stand]z + [triv]z?
t=1,c=1 [triv]
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p=2 T = stand
t=0,c=0 [stand]
t=0,c#0 [stand] + ([triv] + [sign])z + [stand]z?
t=1,c¢Fy | [stand](1+ 2+ 2% + 223 + 24 + 25 + 20) + 2[triv](z + 22 + 2* + 2°)
t=1,¢=0 [stand] + ([stand] + 2[triv])z + [stand]z?
t=1,c=1 | [stand](1 + 2z + 22 + 223 + 24 + 25 + 20) + [triv](z + 222 + 22% + 2P)

Hilbert polynomaials:

p=2 T =triv T = stand
t=0,c=0 1 2
t=0,c#0 14+22+222+23 242z + 222
[CaKa21], Thm 2.11
(1—24)(1 - 29) 2(1 — 2%)(1 — 29)
t=1,c¢Fy (1—2)2 (1—2)2

[CaKa21], Thm 3.17
t=1,¢=0 (14 2)? 2+ 4z + 222

2—z— 23— 20— 27498

t=1,c=1 1
‘ (1-2)7

[Li1}], Thm. 8.2

In all cases, the singular vectors are known explicitly and they are given in the following

lemmas and propositions.

Proof. The irreducible representation L;.(triv) is described in the following lemmas and

propositions:
e for t =0, ¢ = 0 in Proposition 2.6.11 or Proposition 4.1.4;

o for t =0, ¢ # 0 in Lemma 8.1.2;

fort=1,c#0,1 in Lemma 8.2.2;

fort =1, ¢ =0 in Lemma 2.6.13;
e fort =1, ¢c =1 in Proposition 4.1.4.

The irreducible representation L; .(stand) is described in the following lemmas and proposi-

tions:
e for t =0, ¢ = 0 in Proposition 2.6.11;
e for t =0,c¢# 0 in Lemma 8.3.3;
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e fort=1,c# 0,1 in Lemma 8.4.7 and Lemma 8.4.12;
e fort=1, c =0 in Lemma 2.6.13;

e fort =1, c=1 in Lemma 8.5.1.

8.1 The irreducible representation Lg(triv)
in characteristic 2 for ¢ # 0
Theorem 8.1.1 ([CaKa2l], Theorem 2.11). Letk be an algebraically closed field of character-

istic 2, let n be an arbitrary odd integer, the parametert = 0 and the parameter ¢ € k generic.

The singular vectors in My .(triv) which generate the mazimal proper graded submodule are

T2+ TiT; + aTjQ, Tx;TE, < j <k <n. The Hilbert polynomial of the irreducible represen-
tation Lo (triv) of Hoc(Sn,b) equals

HilbLO,c(triv)(z) =1+2)(1+n—-2)z+ 22).

Let us reprove a special case of this theorem, while also calculating the character of
the representation Lg .(triv), and clarifying that “generic ¢” in this case means ¢ # 0. The
special case we will prove is the following lemma. The proof is following [CaKa21], simplifying

where possible.

Lemma 8.1.2. Let k be an algebraically closed field of characteristic 2, and let the values of
the parameters be t = 0 and ¢ # 0. The irreducible representation Lo (triv) of Ho(S3,bh)

is equal to the baby Verma module Ny .(triv), with the character
XLo.(triv)(2) = [triv] + [stand]z + [stand]z? + [triv]Z
and the Hilbert polynomaial
Hilbr, (triv)(2) = (1 +2)(1 + 2 + 22) = 1422 +222 + 23

Proof. When n = 3, the elementary symmetric polynomials in S(h*) are

_ -2 =2 - —2
02 = T1T2 + X123 + Taxz = T102 + (T1 + T2)° = T1~ + T102 + T2

and

03 = T1X2X3.

Note that these are exactly the vectors which Cai-Kalinov found above. The fact they are

symmetric immediately shows they are singular at ¢ = 0. The quotient of Mg .(triv) by the
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submodule generated by these vectors is the baby Verma module Ny (triv), which has the
above stated character and Hilbert polynomial (see Example 4.1.1).
It remains to show that whenever ¢ # 0 this baby Verma module is irreducible.

Let aj,a2 €k, let i =1 or ¢ = 2, and calculate
Dy, —y, (0177 4 a2T32) = ca;.

This shows that whenever ¢ # 0, there are no singular vectors in degree 1 of Ny .(triv).
In degree 2, a basis of M&c(triv) >~ S2(h*) is {712, 7173, T2°}, and &3 is their sum. After
taking the quotient by &3, we can choose {Z12,732} as a basis of N&c(triv). To look for

singular vectors in N2, (triv) we calculate, for aj,as € k

c(l - (12)) (1-(23))

Dy, —ys (a1T1° + ag72%) = — — (171 + ap73°) — ¢ — (0171 + apT3°)

T — T3 Ty — T3
—2 =2 —2 —2
ay +ag)(x1” — T2 agx2” — ax3
_ L 7)( r )+c 2 02
T1 — T2 Tg — T3

= c(ale + (a1 + ag)aTQ).

If ¢ # 0, the only vectors of the form a;Z72 4+ a2T3° in the kernel of Dy, _y, have a1 = 0 and
a1 + a2 = 0, which shows that there are no singular vectors in Ngvc(triv).
Finally, a basis of N&C(triv) is {71273}, and we have
T — TiTy°  T°T — T1°T3
c

92
Dyl*ys(l‘l 372) = —C —— - ———
Tl — X2 T2 — I3

= c(TTa +71°),

which is not zero in Ng .(triv) when ¢ # 0.
This shows that when ¢ # 0, Ny (triv) is irreducible. O

8.2 The irreducible representation L; .(triv)

in characteristic 2 for generic c

Theorem 8.2.1 ([CaKa21], Theorem 3.17). Letk be an algebraically closed field of character-
istic 2, let n be an arbitrary odd integer, the parameter t = 1 and the parameter ¢ € k tran-

scendental over Fy. The Hilbert polynomial of the irreducible representation Li.(triv) of
H; (Sy) equals

Hilby, (eriv)(2) = (1 + 214+ (n—1)22 4 (n— 1)2% + 29).

So, in this case the reduced Hilbert polynomial (in the sense of [BaChl3al, Proposition
3.4) of Ly .(triv) equals the Hilbert polynomial of Lg .(triv).
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Again, let us reprove a special case of this theorem, while also calculating the character
of the representation L (triv), and clarifying that “generic ¢” in this case means ¢ ¢ Fs.
(note: alternatively, this follows from Theorem 4.1.3). The special case we will prove is the

following lemma. The proof is using [CaKa21] but can be greatly simplified in this case.

Lemma 8.2.2. Let k be an algebraically closed field of characteristic 2, and let the values of
the parameters be t =1 and c # 0,1. The irreducible representation L .(triv) of Hy(S3,h)

is equal to the baby Verma module Ny (triv), with the character
XL (¢riv) (2) = ([triv] + [stand]z + [triv]z?) ([triv] + [stand]2? + [stand]z* + [triv]2f)
and the Hilbert polynomaial

Hilby,, (triv)(2) = (1 + 2)2(1 4 222 + 224 + 2°).

Proof. The baby Verma module Nj .(triv) is the quotient of M .(triv) by the graded sub-
module generated by 532 and 732. The reduced module is the quotient of M .(triv) = S(h*)
by the submodule generated by @3 and 73 without p!” powers, as described in [BaChl3a],

Proposition 3.4. Its character is called the reduced character, denoted H(z), and is equal to

H(2) = Xs(9")/(025(0)+035(5"))
= Xs@m(1—2%)(1 - 2%
= [triv] + [stand]z 4 [stand]z® + [triv]z®.

Again by [BaChl3a], Proposition 3.4, the character of Nj .(triv) is

Xlec(triv)(Z) = Xs@) (h*) H(ZQ),
where S®)(h*) is the quotient of S(h*) by the ideal generated by {z” | 2 € h*}. Using

Xs@)(p+) = [tTiv] + [stand]z + [triv]z?,

the character of Nj (triv) can be calculated as

XNl,c(triv) (z) = XS(Q)(K)*) : H(ZQ)
= ([triv] + [stand]z + [triv}z2) ([triv] + [stand]2? + [stand]2* + [triv]zG)

It remains to show that when ¢ # 0,1, the baby Verma module Nj .(triv) is irreducible. Let
us start with the computation that will show that any submodule of Ny .(triv) containing

the top degree also contains the bottom degree. We choose the basis of monomials {Z7'727 }
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of S(h*) = M .(triv). After taking the quotient by

92 _ 4,22 4

02" =1 +7T1°T2” + T2
732 = 7205275

—4__—2 —2—4

=71 T2" +T1 T2

—6 | —2 2
=21 +T1703

we can choose the basis {Z1'T27 | i < 6, j < 4} of Ny (triv). In particular the top degree

N} (triv) is 1-dimensional and spanned by T1°T5°.

Assume U is a Hj (53, h)-submodule of N; (triv) containing the top degree, so T1°73° € U.
Then U also contains Dgl yzDzE/)l s (71°72%). Let us calculate this vector. In the following
computation we use 77 + Tz + Z3 = 0 and 32> =0, 532 = 0 in Ny (triv).

T1°T9° — 17T +CE1 T9° — X1°X3

3 3 5—3 —3-=>5 —5-——3 —5-——3
Dy, s (F1°T3°) = 9y, (T1°72°) — ¢ ( )

T T3 T -T3

= 521'73° + ¢ (71T + TTR + FOTE + TOTaTE + TT)

=TT e (TR +TUTE T+ T T A T T T+ TTD)
=7'T" + o (' 4+ 70T + T

= (1+o)z'z>.
Next,

D§1*y3 (Tlf)@g) = Dy, —y, (1 + C)#@B)

453 34 453 43
3. €Tl T2 —I1 T2 L1 T2 — X1 T3
=(1+¢) 477375° — ¢ e — + —
r1 — T2 Iro — I3

1+ ¢)e (77°73° + 71 (732 + 73 +T32))
T1°T5° + T (T2 + To%T + T10))

(71
(a1°

1+¢ 0(1:1 To° + T1 T3 4 T 1‘2-1-»”516)
(71

33
¢ (T1°72 + 71" T2 + T1°7 )

Similarly,

Dzl —y3 ($155723) = (14 c)cDy,—y, (371572 LI + w—13x723)
=+ C)c(xl4ﬂf2+9~“12$23 + C(Tl4$2+ T + T T + TEn + I
+ 70T + T7° + 11 (72 + 73)
ol

= (L +Q)e(r'73 + 71°73° + o(F1'T2 + 71T + 7" + 71T + 70TD))
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= (1+c)ec(@'T + 71°02° + c(@T1° + T1°72° + T1a3))

(1+c)e (T1'73 + 71°72°) .

Next,
D;Ll —Y3 (','Ul 3:2 ) (1 + C)CDy1—y3 (ﬁ@ + TIQTQB)
=(1+c)c (T1°T2 + T1°T2° + T1@2° + T1 +T1°72° + T (T3° + TaT3 + T3°) )
=1+ (T0°T + T172° + 71 + 71" + T1°T3 + T1°72°)
=(1+¢)c? (:BTQUTQQ + x13323) :
Furthermore,
Dy, (@1°75°) = (1 + €)¢* Dy —y, (T7°75° + T172°)
= (1+¢)c® (72° — ¢ (T1%(T2 + T3) + T1°02 + T1T2° + T1(T2° + 223 + 73°)) )
= (1+0¢)c? (JTQ?’ —c (:Tf’ + T12T3 + TiTa° + T1° + T12Ta + x1x22))
= (1 + ¢)c*m3°.
Next,
Dy, —, Dy, (71°73%) = (1 + €)* Dy, (73°)
=3 _ =3 =3 _ =3
= (1—1—0)02 —3.%'22—C<x2 2 - xi ? >>
Tr1 — I3 o — I3
= (1+ o) (7" + ¢ (72° + 7273 + 73°) )
= (1+¢)c? (cle + T + (14 C)TQQ) .
Similarly,
D;l yzDS1 y3($1 73°) = (1 + ¢)c* Dy, —y, (77> + 7173 + (1 + ¢)73°)
= (1 +¢)c? (cT1 + Tz — c(cTT + T3 + T + a1 + (1 + )72 + (1 + ¢)73))
= (1 +¢)c? (cT1 + T3 + T7)
= (14 c)c’*m.

Finally,

Dzl yzDzi —y3 (71°73°) = (1 + C)CSDyl—yz (@2) = (1+¢)*c

Now assume that ¢ # 0,1 and that U # 0 is an H; (53, h)-submodule of Nj .(triv). All
submodules of Ny .(triv) are graded. The module N .(triv) = S(h*)/(532S(h*)+7325(h*))

inherits the graded algebra structure from S(h*) and is a Frobenius algebra with respect to
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this structure, meaning that for every k& the multiplication Nﬁc(triv) X Nﬁ;k(triv) —
Nic(triv) gives a nondegenerate pairing. In particular, any nonzero S(h*)-submodule of
Ni,(triv) contains the top degree vector T1°73°. We conclude that 77°73° € U.
The above calculation then shows that

# 3 D5 (—5*3) =1eU

(1 + c)2c3 vi—v2m—us T x2) =
and so U contains the lowest degree of Ny .(triv). The baby Verma module is generated (as
an S(h*)-module or an Hy (S3,h)-module) by its lowest graded piece, so U = Ny .(triv).
This shows that N; .(triv) is irreducible whenever ¢ # 0, 1. O

Remark 8.2.3. An alternative proof of the above lemma is to use Theorems 4.1.3 and 8.2.1.

8.3 The irreducible representation L (stand)

in characteristic p # 3 for generic c

In the following sections we will describe the irreducible representations of rational Cherednik
algebras H; .(S3,h) with lowest weight stand, for all values of parameters ¢ and c. The aim
is to do so over an algebraically closed field of characteristic 2, but the proofs work over an
algebraically closed field of any characteristic p # 3.

We will prove the following lemma in a way which will allow us to use it in later sections,

and then we will restate it in the current conventions.

Lemma 8.3.1. Let k be a field of arbitrary characteristic and t,c € k arbitrary
parameters for the rational Cherednik algebra Hy .(S3,h). The matrices of the Dunkl operators
Dy, —y, and Dy, _,, restricted to degree 1 of My .(stand) when written with respect to the bases
{T1 9T, T2 ®T1,T1 T2, T2 @ T3} for M} (stand) and {1 Q71,1 ® T2} for M (stand) are:

10T T2QT1 T1XT2 T2®T2
t+¢ —t+c —2¢ c ] 1071

((Dyy)lagp (svaney| =
' —c 2c t—c —t—c

1®zy

T1®T1  T2Q7T1  w1QT2  T2QT2

t—2 zT
|:(Dy2—y3)|Mtlc(stand)] = ¢ ¢ ¢ ¢ tem
' 2¢ —c —c  t+2c| 172
Proof. The computation goes as follows:
o SN . x1—(12).71
Dy, —yo (T1 @ T1) = 10y, —y, (T1) @ T1 — ¢ (Y1 — 2,71 — T2) 1:61(_;2 - ® (12).71
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1 — (13).71
el — o - wm) BT 19y

T — T3
T —(23).77 .
—c(y1 — Y2, T2 — T3) x2(—x)3 ® (23).77
1 — T3 T{ — T3 T1 — 71
—t 1T -2 LR o AT B om e LT N o
T1 — T2 T1 — T3 T2 — I3
=t-1®71 —2c- 17T —c-1®7x3
=({t+c)- 1071 —c-1®7T3.
. . . m—(12).13;3 _
Dy, —y, (T2 @ T1) = 10y, —y, (T2) @ T1 — ¢ (y1 — Y2, T1 — T2) o O (12).77
. T2—(13).73 .
— C<y1 —Y2,T1 — l'3> 3;'1(—:33 (024 (13)..@1
_ .\ T2—(23).72 .
—c(y1 — Y2, 73 — T3) xQ(_ $)3 ® (23).71
=t QT ~2 2@ QT e o T
Tl — T2 Tl — T3 T — XT3
=—1t-1®274+2c-1Q7T3+c-1R®7x7
=(~t+¢)-1®@T1+2c-1®73.
o o T —-(12)a37 o
Dy, —y, (T1 @ T2) = 10y, —y, (F1) @ T3 — ¢ (y1 — Y2, T1 — T2) 156(93)21 ® (12).72
-
.z —(13).77 .
—c(y1 — Y2, @1 — 73) :Cl(—x)g ® (13).73
. T —(23).71 .
—c(y1 — Y2, T2 — T3) xz(— 333 ® (23).72
—t 1®T -2 2 @F e @Tt e g
1 — T2 Tl — T3 T2 — T3
=117 —2c- 171 —c-1Q7x3
=217+ (t—c)- 10T
- SN T —(12).7 .
Dy, —y, (T2 @ T3) = 10y, —y, (T2) @ T2 — ¢ (y1 — 2,71 — T2) % © (12).72
_ 12— (13).72 .
—c(y1 — Y2, 71 — T3) :31(55)3 ® (13).72
. T2—(23).72 .
—c(y1 — Y2, T2 — T3) 3:2(_37)3 ® (23).72
T3 — 71 T3 — T3 T3 — T3
=t 1T -2 2l egrm-—c 2 2 omte 2 Ber
T1 — T2 T1 — T3 T2 — I3

=—t-1®T34+2c- 171 +c¢-1® (—T1 — T2)
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—c 1T+ (~t—0c)- 107

Dy,—yy (T1 ® Z1) = (12)(23) Dy, -y, (23)(12) (77 ® 771)

= (12)(23) Dy, —y, (T3 ® T3)

= (12)(23) Dy, —y, ((—71 — 72) ® (—71 — 72))

= (12)(23) Dy, —y, (TT1 @ T1 + T1 @ T3 + T2 @ 71 + T2 @ T3)
= (12)(23)

= (12)(23)

=c-1®x3—c-1R73

(t+c—2c—t+c+c) 1T+ (—c+t—c+2c—t—c) - 1®T3)
(c-1®7T1 —c-1®73)

=c¢c-1Q®T2+c- 1®T1+c-1Q72
=c- 1711+ 2c-1R®7xs.

Dy, —ys (T2 ®7T1) = Dyz—y3(12)($71® 72)
= (12)Dy1—y3($71®3372)
= (12) (Dys—yo + Dyy—y) (T1 @ T2)
=(12)((—2c+c)- 1T+ (t—c—c) - 1®73)
=(t—2c)- 171+ (—¢c)- 1@ .

Dyy—ys(TT @ T3) = (12)(23) Dy, _y, (23)(12)(Z1 ® T3)

= (12)(23) Dy, —y, (T3 © 71)

= (12)(23) Dy, —, (=71 — T2) @ 71)

= (12)(23)Dy, —y, (—T1 @ T1 — T2 ® T7)
(12)(23) (=(t+c—t+ec) - 1®@7T7 — (—c+2¢) - 1 @T3)
(12)(23) ((—2¢) - 1@ 71 + (—¢) - 1 @ 73)

=(-2¢)-1®T2+ (—¢)- 1QT3

=(-20)- 10T +c- 1@T1+c- 1073

Dyz—ys (972 ® @) - Dy2—y3(12)($71 ® 3371)

(12) Dy, —ys (71 ® 77)
- (12) (Dyl—?JQ + Dyg—ys) (3571 ® TI)
=(12)((t+c+¢)- 1Q@T1+ (—c+2¢) - 1 Q@7T)
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—c- 1T+ (t+2¢) - 1973,

Lemma 8.3.2. 1. For any prime p and for t =0, the vectors

2.

Proof.

2.

V= -—T1IQTI +T2®T1+7T1 QT2 + 272 QT2
Vg =2T1QT1I+ T2 QT1 +T1 QT — T2 ® T2
in Mol’c(stand) are in the intersection of the kernels of Dy, _y, and Dy, ;.

Forp #3,t =0 and c # 0, the intersection of the kernels of Dy, _y, and Dy,_,, on
M&C(stand) is J(}’c(stand) which spanned by the vectors vi and va.

1. This follows immediately from Lemma 8.3.1 by setting ¢t = 0.

The leftmost 2 x 2 minor of the matrix of (Dy,—y,)[rs (stana) has the determinant
(t+c)(2¢) — (=) (=t +¢) = c(t + 3¢)

For p # 3, ¢t = 0 and ¢ # 0 this determinant is nonzero, showing that (Dy, —y, )| M} _(stand)

has rank 2 and thus its kernel has dimension at most 2.
O

Lemma 8.3.3. Let p #3,t=0 and c # 0.

1.

104

The vectors vi,ve € M&C(stand) from Lemma 8.3.2 generate a subrepresentation of

My c(stand) isomorphic to My (stand)[—1].

The Hilbert series of the quotient of the Verma module My (stand) by the submodule

generated by v, v s
2(1—=2)

(1-2)*

. The singular vectors 69 ® T1 and 03 ® Ty are in the submodule generated by vy, vs.
. The singular vectors o3 ® T1 and o3 @ T3 are not in the submodule generated by vy, vs.

. The quotient of the Verma module My .(stand) by the submodule generated by vi,v2,

03 ® T1,03 ® Ty has the character
[stand] + ([triv] + [sign])z + [stand]z?

and the Hilbert polynomial
2+ 2z + 222
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6. The quotient of the Verma module My .(stand) by the submodule generated by vi,va,

03 ® T1,03 ® Ty is irreducible.

Proof. 1. The vectors vi,vs are singular and span a representation isomorphic to the

standard representation with the isomorphism
¢ : stand — span{vy,va}

given by
o(Ti) = v;.

By the universal mapping property of the induced module My (stand), the homo-
morphism ¢ of S3 representations extends to a homomorphism, also denoted ¢, of

graded Hy .(S53,h) representations
¢ : Mo (stand)[—1] — My (stand).

where the notation M [k] denotes the grading shift by k meaning M*[k] = M***. For
fe€Sh*) and i = 1,2 we have

o(fez) = f v

We claim ¢ is injective.

Let v € My (stand) be some vector in the kernel of ¢. Without loss of generality
assume v is homogeneous, so there are A, B € S(h*) homogeneous of the same degree
such that

v=A®T]+ B® .

Applying ¢ we get
Avy + Bvg = 0,

which becomes

Reading off the coefficients of ®Z7 and ®T3, we get that this is equivalent to

(—71 4+ T2)A+ (271 + T2)B = 0,
(1 +272)A + (T1 — 72)B = 0.

Considering this as a system of equations over the rational function field k(h*) with
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unknowns A, B € S(h*), we calculate its determinant

A = (=71 + 72)(T1 — T2) — (271 + 72) (71 + 272)
= —3(71° + 7@ + T3°)

= —303.

So, whenever p # 3, the above system has only the trivial solution A = B = 0, so
the kernel of the Hy (53, ) homomorphism ¢ contains only v = 0, and ¢ is injective.
Its image is the subrepresentation of M .(stand) generated by v1,v2, and ¢ gives an

isomorphism between M) .(stand)[—1] and this subrepresentation of My .(stand).

. Consequently, the Hilbert series of the subrepresentation generated by vy, vo is

. 2z
z - Hilbpg, (stana) (2) = -2z
and the Hilbert series of the quotient of the Verma module M .(stand) by the sub-

module generated by vy, ve is

2 2z 2(1-2)

(1-2)? (1-22 (1-2)*

. Checking whether a given vector u = w1 ® T1 + ug ® T3 is in the subrepresentation

generated by v1,vo is equivalent to solving the system
Avi + Bvg = u,

for A, B € S(h*). Reading off the coefficients of @77 and ®T3 we get an equivalent to

the system of equations

(—T1+72)A+ (221 +72)B = w,
(T1 + 272)A + (T1 — 7T2) B = ua.

This system has a determinant A = —373. When p # 3, its unique solutions A, B, as

rational functions on b, as given as:

uy (T1 — T3) + up(2771 + T3)
—309

A=

9

B_ uy (71 + 23372)iu2($71 — 7) ' (8.3.4)
309

The question of whether u = u; ® T1 + us ® T3 is in the subrepresentation generated by

v1, vy is equivalent to checking whether these A, B are polynomials in h* (as opposed
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to rational functions).

When u = 53 ® T we have u; = 73, us = 0 so the solutions to (8.3.4) are indeed
polynomial, with

1
A= (@ -T3), B=g(@+2m)

When v = 73 ® T3 we have u; = 0, ug = 73, and the solutions to (8.3.4) are indeed
polynomial, with
-1 1
A= @m+m),  B= (-

This shows that 73 ® 1 and 03 ® T3 are in the subrepresentation generated by w1, va.

4. Similarly, considering whether o3 ® 1 or o3 ® T3 are in the subrepresentation generated
by wi1,v9 is equivalent to checking whether substituting u; = o3,us = 0 and u; =

0,us = 73 into (8.3.4) gives polynomial solutions A, B.
When u; = 73, us = 0 the formulas for the solution to the system (8.3.4) are

03(T1 — T3)  Txa(T1 + 72)(T1 — T3)

A= =
—303 3(z1% 4 7172 + 72°)

)

= @ +212)  T1m(T1 + T3) (71 + 273)
302 —3(T1? + T172 + T2?)

In characteristics other than p = 3 the numerators and denominators of these rational
functions are coprime, so A, B are not polynomials. We conclude that o3 ® Z7 is not in

the subrepresentation generated by vy, vs.

Similar argument gives that o3 ® T3 is not in the subrepresentation generated by wv1, va.
5. Let My (stand)/U be the quotient of the Verma module My .(stand) by the submodule

U generated by all the singular vectors found so far - v1,ve in degree 1, 3 @ T1, 02 ® To

in degree 2 and 63 ® T, 03 ® T3 in degree 3. By the argument in part (3) of this Lemma,

U is also generated by vy, ve in degree 1 and o3 ® T1,03 ® T in degree 3.

Degree 0 of the quotient My (stand)/U is equal to M&C(stand), so it is isomorphic to
stand as an S3 representation. Degree 1 of the quotient My .(stand)/U is isomorphic

to M&C(stand)/span{vl, va}, so in the Grothendieck group is equal to
[S'(h*) ® stand] — [stand] = [stand] - [stand] — [stand] = [triv] + [sign].

Similarly, using part (1) of this Lemma, degree 2 of the quotient M .(stand)/U is, in
the Grothendieck group, equal to

[5%(h*) @ stand] — [S'(h*) @ stand]
= (2 - [stand] + [triv] + [sign]) — ([stand] + [triv] + [sign]) = [stand].
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Finally, using part (1) of this Lemma, degree 3 of the quotient of M (stand) by the

submodule generated by vy, v looks like

[S3(h*) @ stand] — [S?(h*) @ stand]
= (3 - [stand] + [triv] 4 [sign]) — (2[stand] + [triv] + [sign]|) = [stand],

so, using part (4) of this Lemma, the quotient by the further singular vectors in degree
3, namely 03 ® T1,03 ® T which span an S5 subrepresentation isomorphic to stand

gives the character of [stand] — [stand] = 0 in degree 3.

All together, this means that for p # 3 the character of My (stand)/U is
[stand] + ([triv] + [sign])z + [stand]z?

and the Hilbert polynomial is
2 4 2z + 227,

6. When p > 3, [DeSal4]| Proposition 4.1 tells us that the Hilbert polynomial of the
irreducible representation Lo .(stand) is 2+ 2z +22%. As Lo (stand) is the quotient by
a maximal submodule of M .(stand), and My (stand)/U is a quotient, it follows that
Ly .(stand) is a quotient of M (stand)/U. Using that My .(stand)/U and Lo (stand)

have the same Hilbert polynomial, it follows they are equal.

When p = 2 the results of [DeSal4] do not apply to Hy (53, ). We proceed by a direct

computation which works for all p # 3.

If the module My .(stand)/U is not irreducible, then it has singular vectors. By defi-
nition those cannot be in degree 0, and we showed in Lemma 8.3.2 part (2) that there

are no singular vectors in degree 1 of My .(stand)/U. It remains to examine degree 2.

Degree 2 of My .(stand) has a basis
2 e o 2 o 2 o o 2 o
{x1 RT1, T1T2 QT1, T2” RXT1, T1 RTy, T1x2 DTz, T2~ X .TQ}.

Taking the quotient by the submodule generated by v, vs has the effect on degree 2 of
My .(stand)/U of taking the quotient by the vector space spanned by vy, z2v1, 1V2, Z20s2.
Degree 2 of the quotient My .(stand)/U is spanned by the images of

TP QT T ® Ta.
Let us calculate the action of the Dunkl operators on them:

Dy, (T1° @ 71) = —c(2(T1 + 73) @ T + (71 + 73) 2 T3)
= —c(2T1 @ T2 + T2 ®T1 + 372 ® T),
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Dy, —y, (71° @ T3) = —c (2(T1 + T2) ® T1 + (71 + T3) @ T2)
=2 QT +2T3 QT — T3 QT3) .

In the 4-dimensional space M&C(stand), the vectors vi, va, Dy, _y, (712 ® 71) and

Dy, —y, (T12 @ T3), are linearly independent. This means that in the quotient
(Mo,c(stand)/U)1 = (ngc(stand)/span{vl,vg})l,

no nontrivial linear combination of Dy, _y,(ZT1%2 ® Z1) and Dy, —y, (T1? ® 73) is zero.
This further means that no linear combination of 712 ® 771 and T12 ® T3 is singular in
My (stand)/U.

We conclude that My (stand)/U is irreducible.

Summarising the results of the last lemma, we get:

Corollary 8.3.5. For any p # 3 and c # 0 the irreducible representation Lo .(stand) is the
quotient of the Verma module My (stand) by the submodule generated by vectors v, vy from

Lemma 8.3.2 and 03 ® T1, 03 ® Ta. Its character and Hilbert polynomial are:

[stand] + 2[triv]z + [stand]z?, p=2
XLo,c(stand) (Z) =
[stand] + ([triv] + [sign])z + [stand]z?, p >3

Hilbr,, ,(stana)(2) = 2+ 22 + 22,

Proof. By Lemma 8.3.3 part (6), Lo (stand) is the quotient of the Verma module M .(stand)
by the submodule generated by v1, ve, 73 71,03 @ T3. By Lemma 8.3.3 part (5), this module
has the required character and Hilbert polynomial. It remains only to observe that for p = 2,

[triv] = [sign]. O

8.4 The irreducible representation L; .(stand)

in characteristic 2 for generic c

For this entire section, let p = 2, t = 1, and let ¢ be generic. We will describe the irreducible
representation L .(stand), give singular vectors and its character and Hilbert polynomial,
and clarify again that “c generic” here means c ¢ Fs.

The strategy we use is similar to the strategy we use later for L .(stand) in characteristic
p > 3, but some of the computations we use there do not work in characteristic 2 (namely,
the rescaled Young basis {b,b_} we use there is not a basis in characteristic 2, as explained

in Section 7.2) so we need to treat this case separately.
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First we check what the action of the Casimir element (2 (Definition 2.3.1) tells us about

this case.

Lemma 8.4.1. Let f be a homogeneous vector in a representation of Hy (S3,h) over a field
of characteristic 2, and an element of an irreducible S3 subrepresentation 7. If f is singular,

then
0 7 =triv,

0.f =

cf 7T = stand.

Proof. As y.f =0 for all y € b,

0 T = triv,
R.f =) c(l—s).f=
seS 3cf T = stand,
0 T =triv,

cf T = stand.

Lemma 8.4.2. The following vectors in Mlzjc(stand) span an Ss subrepresentation

isomorphic to stand and are singular for every ¢ over fields of characteristic p = 2:

V] =T RTT+ (T2 QT +T1° @ T3 + T2~ @ 77)

vy = T3 @ T3 + (T2° @ T3+ T1° @ T2 + Ta° @ T7)

Proof. By Theorem 7.2.9, vy, v9 span a copy of stand, with the isomorphism given by z; — v;.
Let us first show that

v1 + VU2 26072®($71+$72)+$712®T1+x722®x72

=(c+ )T RTT+ T A QT+ T QT+ T2 QT + TTz @ T3 + (¢ + 1)T3° @ T3

is singular.

(1 - (i)

i -

Dyl*ys(vl + UQ) = (8y1*y3 ® id) (Ul + U2) —cC Z <E —Zj,Y1 — y3>< ® (Z])) ('Ul + U2)

(ij)es
=3 ® (T1 +73) — o((T1 +72) ©® T3 + (71 + 72) @ 71 + (T2 + T3) © T3)
=@ @ (T1+7) — c((TT+72) ®T2 + (T1 + 72) ®T1 + 71 ® (71 + 73))
=0.
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From here it follows that

Dy, —y, (v1 +v2) = (12)Dy1—y3(12)(v1 + v2)
= (12) Dy, —y, (v1 + v2) = (12).0 = 0.

This shows that v; 4+ vs is singular. From there we can conclude that the all vectors in
the irreducible S3 representation in which v; 4 vy lies are singular, and in particular so are

V1, V2.
O

Checking whether some vector u = uy ® T1 +u2 ® Tz € M (stand) is in the subrepresen-

tation generated by vy, vy is equivalent to solving the system
Avi + Bvg = u,

for A, B € S(h*). Reading off the coefficients of @77 and @73 we get this is equivalent to the

system of equations

((c+ 1)@1% + i@z + (e + 1)T32) A + 732 B = uy,
TP A+ ((c + 1)@7° + cxizz + (c + 1)73°) B = us. (8.4.3)

Lemma 8.4.4. For p =2, the determinant of the system (8.4.3) is
A= (c+1)%53°

When ¢ # 1, the unique rational functions A, B on b solving that system are:

s ui((c+ 1)@12 + 7173 + (¢ + 1)73°) — ug¥3?

(C+ 1)20-722
B— —u 72 + uz((c + 1)77> +j§1$2 + (c+ 1)@2)‘ (8.4.4)
(c+1)%03
Proof. We calculate directly:
A= ((c+ 1)3?12 + T3 + (e + 1)@2)2 — 7273
= (c+ 1)@ + 7172 + 72°)°
= (c+1)%53%
O

We proceed in a way analogous to Lemma 8.3.3.
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Lemma 8.4.5. When p = 2, t = 1 and ¢ # 1, the vectors vi,vy € Mfc(stand) from
Lemma 8.4.2 generate a subrepresentation of M .(stand) isomorphic to M .(stand)[—2].

The Hilbert series of the quotient of M .(stand) by this submodule is 2((11__522).

Proof. The isomorphism of S5 representations
¢ : stand — span{vy, va}
given by ¢(7;) = v; extends to a homomorphism of graded Hj .(S3,h) modules
¢ : M o(stand)[—2] — M (stand).

Assuming some nonzero vector is in the kernel of ¢ is equivalent to assuming there is a

nontrivial solution A, B € S(h*) to the equation
Avi + Bvg = 0.

This is equivalent to there existing a nontrivial solution to the system (8.4.3) with u; =
ug = 0, which is impossible because by Lemma 8.4.4 the determinant of this system is
A= (c+1)%532 #£0. O

Next, we consider the quotient M .(stand)/(vi,v2), and check to see if the p-th powers

of the invariants generate proper submodules in this quotient.

Lemma 8.4.6. Letp=2,t=1, c# 1. We have
S S B Y
02° ®T1,02" @ Ty € (v1,v2), 03" ®T1,03 @ T & (vi,v2) .

Proof. A vector 072 ®7T;, ¢ = 1,2, j = 2,3 is in the submodule generated by wv1,vo if and only
if the system (8.4.3) with u; = 72, ux = 0 for k # i has polynomial solutions 4, B € S(h*).
Lemma 8.4.4 gives these solutions explicitly as rational functions. If j = 2, these rational
functions are in fact polynomial, as the factors 07-2 in the numerator and the denominator
cancel. If j = 3, these rational functions are not polynomial, as the numerator and the

denominator are coprime. ]

Next, we consider the quotient M .(stand)/(vi, ve, 02> ® ¥1, 02> ® T3, 03> R T1,03° @T3).
First we use Lemma 8.4.5 to calculate its character, and then we will show this module is in

fact irreducible and thus equal to L; .(stand).
Lemma 8.4.7. Letp=2,t=1, c# 1. The module
M c(stand)/(v1,v2, 2% @ T1,02° ® T2,03° ® 71,03~ © Ta)
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has the character
[stand](1 + z + 22 + 223 + 2% 4+ 2° + 25) 4 2[triv])(z + 22 + 2% + 2°)

and the Hilbert polynomial

(1-2%)(1 25

2(1 422+ 222 +22% 4221 4225+ 20) =2 (e

Proof. By Theorem 7.2.9, the first terms of the character of the Verma module M .(stand) =
S(h*) ® stand are

XM .(stand)(2) = [stand] + ([stand] + 2[triv])z + (2[stand] + 2[triv])z2
+ (3[stand] + 2[triv])2® + (3[stand] + 4[triv])z* + (4[stand] + 4[triv])2°
+ (5[stand] + 4[triv])2® + (5[stand] + 6[triv])z" + ...

By Lemma 8.4.5, the quotient M (stand)/ (v1,v2) has the character

XMy o(stana) (2) - (1 — z%) = [stand] + ([stand] + 2[triv])z + ([stand] + 2[triv])z?

+ (2[stand])z® + ([stand] + 2[triv])z* + ([stand] + 2[triv])2®
+ (2[stand])z°® + ([stand] + 2[triv])z" + ...

By Lemma 8.4.6, the vectors 32 ® T and 32 ® T3 are in the submodule of M (stand)
generated by vy, vs, so taking the further quotient by the submodule generated by 732 ® 77
and 732 @ Tz does not change the character. Also by Lemma 8.4.6, the vectors 3% ® Z1
and 73° @ T3 are not in the submodule of M, .(stand) generated by vy, ve. The vectors
732 ® 7 and 73° ® T3 generate a submodule of M, o(stand) isomorphic to M .(stand) with
a grading shift. To work out what submodule they generate in M (stand)/ (vi,v2), we
need to get some information on the first few terms of the character of the intersection
(v1,v2) N (732 @ 71, 03> ® T3).

Assume the intersection (vi,v2) N <<Tg2 ® T1,03° ®Tg> is nonzero in degree 7. This in-
tersection is a submodule of <CT32 ® T1,03% @ :Tg>, which is itself a homomomorphic image of
M, .(stand)[—6], so isomorphic to a quotient of M .(stand)[—6]. If the intersection were
nonzero in degree 7, then M; .(stand)[—6] would have a nontrivial submodule starting in
degree 7, and thus M .(stand) would have a nontrivial submodule starting in degree 1. This
means there would be a singular vector in degree 1 of M .(stand). By Lemma 8.4.1, the
action of {2 on Mic(stand) is by ¢ + 1, its action on singular vectors of type stand is by
¢, and its action on singular vectors of type triv is by 0. Asc+1 #cand c+1 # 0
whenever ¢ # 1, Mllvc(stand) doesn’t have any singular vectors and so the intersection

(v1,v2) N <732 ®T1,03° @ T2> is zero in degree 7.
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Thus, we can calculate that the first seven terms of the character of the quotient of the
Verma module M .(stand) by the submodule generated by v1, V9,022 Q T1,02° @ T3,03° @
71,032 ® T3 are equal to

[stand] + ([stand] + 2[triv])z + ([stand] + 2[triv])z?
+ (2[stand])z® + ([stand] + 2[triv])z* + ([stand] + 2[triv])2"+
+ ([stand])z® +0- 2" +...
This means the module M; .(stand)/(vy, v, 32 ® T1,02° ® T3,03° ® T1,032 @ Ta) is zero in

degree 7, and consequently in all higher degrees. So, the first terms of its character, which

we have calculated, are in fact all, and its character is equal to
[stand](1 + z + 22 + 223 + 2% + 2° + 25) 4 2[triv])(z + 22 + 2% + 2°)

as claimed. The Hilbert polynomial follows from taking graded dimensions of both sides. [J

Alternative proof. We include this more direct proof, which is similar to a later proof used in
the case of p > 3.
By Lemma 8.4.5, the quotient M; .(stand)/ (vi,v2) has the character

XMlyc(stand)(Z) ' (1 - 22)'
By Lemma 8.4.6,
(v1,v2) = (v1,v2,02° ®T1,02° @ T3)

and

(v1,v2) # (v1,v2,03° ® T1,03° ® T2) -

So

XMy o(stand) / (v1 ,v2,72° @71,75°072,052 € T1,05° €T3 )
= XM,c(stand) ~ X(vi,v2) ~ X(o320a7,052073) T X(vi,02)0 (032 071,55%073)
2 6
= XM, o(stand) — Z~ XM .(stand) — % XM (stand) T X(vl,v2>ﬂ<732®ﬁ,732®@>'
The remaining task is to describe the submodule (vq,v2) N <732 ® T1,03° @ :T2> Assume
some vector u is in (vy,va) N <732 ® T, 03> ®TQ>. This means that there are A, B,C,D €
S(h*), which we can assume without loss of generality are homogeneous, such that

u = Avy; + Bvy = C53° @ 71 + D73’ @ T3.
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Solving the equation for C, D we get

C=—; (A ((c+ )71 + cz1a3 + (c + 1)72%) + B - 737)
3

1 . . .
D= — (A7 + B - ((c + 1)1 + cz172 + (c + 1)72%)) .

So, we are looking for A, B € S(h*) such that

752 |A- (o2 +71° +T3°) + B 73°

732 |A 712 + B - (o2 + T1° + 72°).
In particular, taking their linear combination which eliminates B, we get that
732 |A- (o3 +77° +73°)° — A-77°T3° = A+ (c+ 1)%53°.

As 73 and @3 have no common factors, it follows that 732 | A. From here we immediately get
that @32 | B, which implies that

u = Avy + Bvy = A'53%01 + B'53%09
for some homogeneous A'B’ € S(h*). As u was arbitrary, it follows that
(v1,02) N (3% © T1,03° @ T2) = (L1737, 205" -

The submodule <v1732,02?32> is isomorphic to M .(stand) by the same argument that we

used for (v1,v2). Finally, we get that

XMy o(stand)/ (v1,02,052QF1,02 202,05 G103 OT3)
_ 2 6 8
= XM (stand) — Z XM c(stand) — # XM .(stand) +z XM . (stand)

= XM; (stand) * (1 - 22)(1 — 26).
This proves the claim. -

We have now constructed the module
M o(stand)/ (v1,v2,5%° @ T1,0%° © T2,03° @ T1,03 ©T2)

and calculated its character. It remains to see that this module is irreducible, which we show

by showing it has no singular vectors.

Lemma 8.4.8. Letp=2,t=1, c# 1. The module

M o(stand)/ (v1,v2,02° ® T1,03° © T2, 03° ® T1,03° @ T2)
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has no singular vectors in odd degrees.

Proof. By Corollary 2.3.5 and Lemma 8.4.1 the action of {2 on Mﬁc(stand) is by ¢+ k, its
action on singular vectors of type stand is by ¢, and its its action on singular vectors of type
trivis by 0. If k is odd then ¢+ k # ¢, and if additionally ¢ # 1 then ¢+ k # 0. So, in that

case there can not be singular vectors in degree k of M .(stand). O

It remains to check for singular vectors in even degrees. Let us use Lemma 8.4.1 again.
For an even k£ € N, the action of {2 on Mfc(stand) is by the constant ¢+ k. The action of {2
on singular vectors of type triv is by 0, and whenever ¢ # 0 we have ¢+ k # 0, so there can
be no singular vectors of type triv in even degrees. On the other hand, the action of {2 on
singular vectors of type stand is by ¢ and for even k we have ¢ + k = ¢, so we need to check

even degrees for singular vectors of type stand.

Lemma 8.4.9. Letp=2,t=1, c# 1. The module
M (stand)/ (vi,v2,02° ® T1,02° ® T2,03° ® T1,03° ® T2)
has no singular vectors of type stand in degree 2.

Proof. By Theorem 7.2.9, Mic(stand) is a direct sum of two copies of stand and an in-

decomposable extension of two copies of triv. The bases for the two copies of stand are
{2 @77, 72 ®@ 71},
(T QT+ T QTa+ T2 QT1, Ty QT +T1° QT3 +T3° @ T}

Let us consider just the part of these copies of stand corresponding to Z7 (this is enough as

stand is irreducible), so the part spanned by
A ) —
02Q@T1, 21" QT +71" Ty +T2" K.
They satisfy

Dy, (02 ®71) =12 @ 71
Dy —y(TI2 @ TT+T1° @ T3 + T3° @ T7) = €T3 @ 1.
This means that the only singular vector of type stand corresponding to Z7 in Mﬁc(stand)
is
vV =c AT+ (T QT+ T1° @ T3 + T3° @ T1),
and there are no singular vectors in Mﬁc(stand)/ <1)1, v2,03° ® 71,022 Q@ T3,03° @ T1,03° ® T2>

O
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Lemma 8.4.10. Let p=2,t =1, c# 1. The module
M (stand)/ (v1,v2,52° @ T1,03° ® T3,03° © T1,03° @ T2)

has no singular vectors of type stand in degree 4.

Proof. By Theorem 7.2.9, M} (stand) is a direct sum of three copies of stand and two
indecomposable extensions of two copies of triv. The bases for the T7 part of the copies of

stand are
R, (T RT+TIR T2 + T2 @ T1), 02(T1° @ T + T1° @ T3 + Ta° @ T1).

Using Theorem 7.2.9 again, we see that the submodule (v1,v2) which we quotient by contains

the following vectors in the stand isotypic component of degree 4:
[, S [ —) I — | —
Oov] =€ 02" @ T+ 02(T1” @T1 +T1” @ T3 + T2 ®T7)
T1%01 + T30 + T1o0p = 02° QT + ¢ 02(F1° @ T1 + T1° @ T3 + T3 @ T1).
As ¢ # 1, these two vectors are linearly independent, and so both 732 ® Z7 and 0—2@3—12 QKT+

T12 ® T3 + T2° @ 1) are in (vy, ve), while 73(T7 ® T1 + T1 ® T3 + Tz ® T1) is not and spans
the Z7 part of the stand isotypic component of Mﬁc(stand)/ <v1, V2,52 ® aT,>

We calculate
Dy —ys (T3 (FAQTI+TIR T2 + T2 @ T1)) = To° @ T1 + T1°72 @ T1 + T1°72 @ Ta,

which can be shown directly or using Lemma 8.4.4 does not lie in the submodule (v, v2), so

is not zero in the quotient M c(stand)/ (vi,v2,55° ® T;). O

Lemma 8.4.11. Let p=2,t=1, ¢ # 1. The module
M o(stand)/ (vi,v2,02° ® T7,0%° ® T2,03° @ T, 03° @ T2)
has no singular vectors of type stand in degree 6.

Proof. Using Theorem 7.2.9, the part of the stand isotypic component of Mfc(stand) cor-

responding to 1 has a basis

A=0203(TT QT+ T QT2 + T2 ®T7)
B =271} @ T1 + T2 @ T3 + Ta? @ T1)
C=5"®T1

D=053"®71
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E =53(z1° + 21°T2 + 73°) @ T1.
Taking a quotient by 732 ® Z; annihilates
73’ @77 = D.
Taking a quotient by (v, v2) annihilates (again using Theorem 7.2.9)

7220y =B+c¢-C
o3(T1v1 + Tav1 + Tve) =c- A+ FE

72(F1201 + T22v1 + T12vg) = ¢- B+ C.

So, the resulting basis for the Z7 part of the copies of stand in Mﬁc(stand)/ <vl, v2,55° ® :L‘T>

is A. To check that it is not singular in this quotient, we calculate
Dy, (A) = 777 ® (77 + T2),
which can be shown directly or using Lemma 8.4.4 does not lie in the submodule (vi,v9). O

Lemma 8.4.12. Let p=2,t =1, c#0,1. The quotient of the Verma module M .(stand)
by the submodule generated by vi,ve from Lemma 8.4.2 and 072 7T, ] =2,3,1=121s

irreducible, and thus equal to L .(stand).

Proof. By Lemma 8.4.8, M; .(stand)/ <vl, V2,052 ® T, j =2,3,i =1, 2> has no singular vec-
tors in odd degrees whenever ¢ # 1. By Lemma 8.4.1, 2 acts on all even degrees of this
module by ¢, on singular vectors of type triv by 0, and on singular vectors of type stand by
c. As ¢ # 0, there are no singular vectors of type triv in even degrees. By Lemmas 8.4.9,
8.4.10 and 8.4.11, there are no singular vectors of type stand in even degrees either. So,
M o(stand)/ (vi,v2,05° ® T;, j = 2,3,i = 1,2) is irreducible.

O

8.5 The irreducible representation L; .(stand)

in characteristic 2 for c in F,
The previous section worked out the characters of L (stand) for all ¢ # 0, 1. For ¢ = 0, this
character is computed in Lemma 2.6.13. In this section we compute it for ¢ = 1.

For the entire section, let p =2, ¢t =1, ¢ = 1. The main aim of the section is to prove the

following lemma.

Lemma 8.5.1. Let p = 2, t = 1, ¢ = 1. The irreducible representation Ly 1(stand) is
the quotient of the Verma module M 1(stand) by the submodule generated by the following
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vectors:

M =TIQT+ T2
v3 = 03(T1 ® 71 + T2 ® 71 + T3 © T3)
v =03(T1° @ T2 + T2° @ T7)

vr = 0303(T1° @ T + T3” QTT + To” @ Ta).
The character of Ly 1(stand) is
XLi.1(stand)(2) = [stand|(1 + 2 + 22 4223 4+ 2 4 2% + 20) + [triv](z + 222 4 22% + 2°)

and its Hilbert polynomial is

1—z—23—25—2742,8
(1—-2)? ’

Hilbr,, | (stang)(2) =2+ 32 + 422 + 423 + 421 + 325 + 220 =

By Lemma 8.4.1, the action of {2 on Mfl(stand) is by 1+ k, the action of {2 on singular
vectors of type triv is by 0, and on singular vectors of type stand is by 1. So, we will
be looking for singular vectors of type triv in odd degrees and for singular vectors of type
stand in even degrees of M (stand) and its quotients. We will analyze M ;(stand) and
its quotients degree by degree, looking for singular vectors in each degree, taking a quotient
by them, and then looking for further singular vectors in this quotient. Note that we need
to consider all degrees, as ¢ is not generic there is no guarantee that interesting things
happen only in degrees divisible by 2. We will use Theorems 7.2.7 and 7.2.9 significantly and

repeatedly to construct bases of the graded pieces of M; ;(stand) and its quotients.

Lemma 8.5.2. Let p = 2. The only singular vector in M (stand) is
v =T ® T+ T2 QT.
Hence, the first terms of the character of Ly 1(stand) are
XLii(stana) = [Stand|(1 + 2z +...) + [triv](z +...).

Proof. There are no singular vectors in degree 0 by definition, so L ; (stand) = M7 | (stand) =
stand. By Theorem 7.2.9 M. 1171(stand) decomposes, as an S3 representation, into a direct sum
of a copy of stand and an indecomposable extension of two copies of triv, with a submodule
spanned by T7 ® T + T3 ® T1 and the quotient spanned by T7 ® T1 + T2 ® T1 + T2 ® T3. By
Lemma 8.4.1 the singular vectors in odd degrees need to span subrepresentations isomorphic

to triv. We check:

Dy ys(T1I®T2+ T2 Q7)) = 10T+ 10T+ 10T+ 1971 =0
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Dy, (TT @ T3 + T3 @ F1) = (12) Dy, 4, (12)(T1 @ T3 + T3 @ 1) = 0.

So, v1 = T1 ® Tz + T2 ® T is singular. After taking a quotient by the submodule generated
by v1, the vector T7 ® 1 + T3 ® T1 + T2 ® T2 spans a subrepresentation isomorphic to triv

in M{ (stand)/ (v1), so we need to check if it is singular.

Dy [T QT+ ORI+ 1RO =107 +10Thm+10Hm +107T + 107 + 10T
= 1®@%0€M€71(stand)/<v1).

This shows v; is the only singular vector in degree 1, and proves the lemma. O

We now analyse degree 2 of the quotient M ;(stand)/ (v1).

Lemma 8.5.3. Let p = 2. There are no singular vectors in Mﬁl(stand)/ (v1). Hence, the

first terms of the character of Ly j(stand) are
XLi.1(stana) = [Stand|(1 + 2 + 22.0) + [eriv](z +222..)).

Proof. By Theorem 7.2.9, Mﬁl(stand) decomposes as a direct sum of a copy of stand and an
indecomposable extension of two copies of triv. Taking the quotient by vi, which generates
(a priori, a quotient of) Mj 1(triv)[—1], has the effect in degree 2 of removing one copy of

stand, leaving M, ;(stand)/ (v1) with the character stated above.

Using Lemma 8.4.1 we see that we only need to inspect the stand isotypic component for
singular vectors. The Z7 components of the two copies of stand in Mﬁl(stand) are spanned
by

CIQT, T QT 4TI QT3+ T3 ® T
Taking the quotient by v annihilates the vector
T = (2@ 71) + (T1° QT + T1° ® T2 + Tz° © T1).

So, to see that there are no singular vectors in degree 2, it is enough to check that o3 ® 7 is

not singular. We calculate
Dyl*ys(@@)ﬂ) =T2®7T1 ¢ <U1> )

which proves the lemma. O

Lemma 8.5.4. Let p = 2. The only singular vector in Mf’vl(stand)/ (v1) s
v3 = 03(TT @ T + T2 @ T1 + T2 ® 7).
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Hence, the first terms of the character of L1 i(stand) are
XL1.1(stana) = [Stand|(1 + 2 + 242234 )+ [triv)(z4+2224+0- 224 ..)).

Proof. By Theorem 7.2.9, Mil(stand) decomposes as a direct sum of a copy of stand, an
indecomposable extension of two copies of stand, and an indecomposable extension of two
copies of triv. One can check directly that taking the quotient by (vq), which is isomorphic
to (a priori, a quotient of) Mj ;(stand)[—1], has the effect of removing one copy of stand
and one copy of triv. Let us do this calculation for triv, as stand is similar.

By Theorem 7.2.9, the basis for the indecomposable extension of two copies of triv is
02(T1 ® T1 + T3 ® T1) = o9v; for the submodule, and 73(77 ® T1 + T2 ® T1 + T2 ® T3) for the
quotient. Taking a quotient by (v1), by Theorem 7.2.7, annihilates o9v; and leaves one copy
of triv spanned by 73(ZT1] ® T1 + T3 ® T1 + T2 ® T3). After doing a similar computation for
stand, we conclude that the character of Mil(stand)/ (v1) is [stand]2z3 + [triv]z3.

It remains to check if there are any singular vectors in degree 3. By Lemma 8.4.1 we
only need to inspect the triv isotypic component, which is 1-dimensional and spanned by

v3 =02(T1 @ T1 + T2 @ T1 + T2 ® T3). We calculate:

Dy —ys(13) =2(TIRTT + T2 @ T1 + T2 @ T3) + 02 @ T1+
+ QT +02 QT1 + 02 QT] + 02 Tz
= (T1T2 + 72°) @ T1 + (T1° + T13) © T3
= (Z1 + Z2)v1 € (),

Dy, —ys(v3) = 51.Dy; —yy51.(03)

= 51.Dy, —ys (v3 +T301) € (V1)

So, v3 is singular in M; ;(stand)/ (vi) (though not in M; ;(stand)), and the first terms of

the character of L; ;(stand) are as stated in the lemma. O

Lemma 8.5.5. Let p = 2. There are no singular vectors in Mﬁl(stand)/ (v1,v3). Hence,
the first terms of the character of Ly 1(stand) are

XLi.(stand) = [Stand](1 + z + 224234204 )+ eriv)(z + 222 + 220 ).

Proof. Using Theorem 7.2.9 again, Mﬁl(stand) decomposes as a direct sum of three copies
of stand and two indecomposable extensions of two copies of triv. Using Theorem 7.2.9 one
can show directly that taking the quotient by (v, vs) annihilates two copies of triv (we skip
this computation). Let us do a computation showing what happens to the stand isotypic
component by taking the quotient, by concentrating on the part of it corresponding to T1

under the isomorphism with stand.
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The basis for the z1 part of the stand isotypic component of val(stand) is

A=5" @7
B =03(71 ® 71 + 71 ® 72 + T2 © 71)
C=03(T1° OT1 +T1° @ T3 + T3° ® T1).
Using Theorem 7.2.7 we see that taking the quotient by v; annihilates (using Theorem 7.2.7)

the following vector in the Z7 part of the stand isotypic component of Mﬁl(stand):
oot = A+C ,

while taking the quotient by v3 annihilates

. __ mod (vy)
T1v3 = A + Ta090 = A.

So, the Z7 part of the stand isotypic component of Mﬁl(stand)/ (v1,v3) is spanned by B.
This shows that the first terms (up to z?) of the character of M (stand)/ (v1,vs) are as
stated in the lemma; it remains only to show that Mﬁl(stand) / (v1,v3) has no more singular

vectors in degree 4.

If it had, they would be of type stand by Lemma 8.4.1, so B would be singular. We

compute
Dy,—ys(B) = Dy, —y,(03(T1 @ T1 + T1 ® T3 + T2 ® 1))
mod(vy) .
="' Dy, (7371 © T1)
=TT ©T1 + 03 ® T3 ¢ (v1,03).
This proves B is not singular in M j(stand)/ (v1,v3). O

Lemma 8.5.6. Let p = 2. The only singular vector in M7, (stand)/ (vi,vs) is
2 e | 2 o
v5 =03(T1° T2 + Ta” R7T7)-
Hence, the first terms of the character of Ly 1(stand) are
_ 2 3, .4, .5 . 2 4, 5
XL .1 (stand) = [stand](14+ 2z 4+ 2°+22° + 2" + 22 +...) + [triv](z + 22 + 22" + 2 + ...).

Proof. We proceed as in the last four lemmas. By Lemma 8.4.1, any singular vectors in
degree 5 are of type triv, so we only examine this. Using Theorem 7.2.9, a basis for the

triv component of M7 (stand) is

A=50%T ® T2 + T2 @ T1) = 53201
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B =53’ (T @ T1 + T3 @ T1 + T3 © T3) = 0303
C =03(1° ® T3 + T2° @ T1)
D=0o3Z1° ®T1 + T2° ®T1 + T2° ® T3).
Here A, C span submodules, and B, D their extensions. Quotienting by (v1,vs) annihilates

A and B. The only submodule of type triv is spanned by C, so we set v5 = C and check if

it is singular:

Dy, —ys(vs) = T202v1 € (v1)

Dy2_y3(’05) = 8§1.202V] = T1092V] € <’U1> .

This proves the claim that vs is singular, and shows that the first terms of the character
of Mj 1(stand)/ (v1,v3,v5) are as stated in the lemma. It remains to show that D is not a

singular vector, so we calculate
DyI,yS(D) = 02%1 ® x1 + 03V ¢ <’L)1,’L)3> .
O

Lemma 8.5.7. Let p = 2. There are no singular vectors in Mﬁl(stand)/ (v1,v3,v5). Hence,
the first terms of the character of Ly 1(stand) are

X1 (stand) = [stand](1+ 24224223420 425420+ )+ [triv](z+222 4221+ 2540254 ).

Proof. We proceed as in the last five lemmas, skipping the triv computation and analysing
only the Z7 part of the stand component, as by Lemma 8.4.1 any singular vectors in degree
6 are of type stand. Using Theorem 7.2.9, a basis for the =1 part of the stand component

component of M7, (stand) is

A=73" @1

B=03(T1° + T1° 72 + 72°) @ 71

C=03"@T1

D =5303(T1 ® T1 + T3 @ T1 + T1 @ T2)

E=502F1 @71 + T3° @ T + 77 @ T3).
Here A,C, D, E span submodules, and B spans an extension of the span of A. By Theorem
7.2.7, taking a quotient by (v1,vs) annihilates:

02°Zv =C+E
o3T1v1 = B+ D+ 51.A
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092X1V3 = C+ 51.(0 + E)
Tivs = A+ B+ D+ s1.A.

Hence, in the quotient we have A =C = EF = B+ D = 0, and we conclude that L?yl(stand)
has at most one copy of stand. To see it has exactly one copy, we need to check that B,
which spans the Ty part of the stand component component of M1671(stand) / (v1,v3,v5) is

not singular:

Dyy—ys(B) = Dy (03(T1° + T17°T2 + 73°) © T7)
= @' T+ 11772 + 12°) @ T + 037172 R T3
+o3(T1 + T2 + T3+ T30) @ T
= (T1'T2 + T1°72° + T2°) @ T1 + 037172 @ T3
+53(F17T2 + 72°) @ T1
= (@'T + T 4+ T + TEs + Ta0) @ T1 + 037172 @ T

=¢ (v1,v3,05).

This proves the claim. O

Lemma 8.5.8. Let p = 2. The only singular vector in val(stand)/ (v1,v3,v5) is
A B, J R
V7 = 0'20'3(l’1 XTI +T2° 7T + T2 ®{E2).
Hence, the first terms of the character of Ly 1(stand) are

XL1,1(stand) = [Stand](1+2+z2+223+Z4+Z5—{—Z6—|—O-Z7—|—,“)
+[triv)(z + 222 + 220 + 2540284027+ ...

Proof. We proceed as in the last five lemmas. The stand computation, which we skip and
which can be done directly using Theorems 7.2.9 and 7.2.7, shows that there are no subrepre-
sentations of type stand in M1771(stand)/ (v1,v3,v5). To see what the triv component looks

like, we use Theorem 7.2.9 to say that the triv component of MY, (stand) has a basis:

(T1 @72 + T2 @ 77)
=0 (TI QT + T2 @ T1 + T3 @ T3)
732 (TT ® T2 + T2 @ 1)

(

TI QT+ T3 QT1 + T3 ® T3)

=0303(T1° @ T3 + T3° @ T1)

(
_ S, R, S S
= 0203(T1° QT1 + Ta” @ T1 + Ta” @ T3).
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Here A, C, E span submodules and B, D, I’ their extensions.
By Theorem 7.2.7, taking a quotient by v, vs, vs annihilates:

T3ov = A
7320 = C
— (=3 —2—— —2 - D E
03(T1° +T1° T2 + 2% )y = D +
o3°v3 = B

oqvus = F.
So, M{ (stand)/ (v1,v3,vs) is spanned by
vr =F =0303(T1° @ T1 + T2° @ TL + T3° ® T3).
We calculate

Dy, —ys (v7) = Dyl*ys(m(l‘iﬂ @ TT + T32 @ T1 + T3 273))

= Tyvs + (T1°T2 + T1%2° + T2°)v3 € (v1,v3,03) ,

and consequently

Dyz—y3 (U7) S <U1a 3, U5> .

This proves the lemma. O

Proof of Lemma 8.5.1. In Lemmas 8.5.2, 8.5.3, 8.5.4, 8.5.5, 8.5.6, 8.5.7 and 8.5.8 we looked
at degrees 1,2,...,7 of the module M; ;(stand) and its quotients, looking for singular vec-
tors and taking a quotient by the submodule generated by all the singular vectors found
so far. The only singular vectors we found in these successive quotients were v, v3, vs and
vy. This proves that there are no more singular vectors in degrees 1,2,...7 of the module
M, 1 (stand)/ (v, vs, vs, 7).

By Lemma 8.5.8, Mfl(stand)/ (v1,v3,v5,v7) = 0 for k = 7 and consequently for all
k > 7. This lets us conclude that M i(stand)/ (v1,v3,vs,v7) has no singular vectors at all
(we checked that it has none in degrees up to 7, and it is concentrated in those degrees),
so it is equal to the irreducible module L; ;(stand)/ (v1, vs, vs,v7). Furthermore, it lets us
calculate the character of this module by calculating its first seven terms, which we did in
Lemma 8.5.8:

XLy (stana) = [Stand](1 + z + 22 4223 420 4 20 4+ 25) 4 [triv](z + 222 + 22 + 25).
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Chapter 9

Irreducible Representations of
H; -(S3,b) in Characteristic 3

Representation theory of S3 over an algebraically closed field k of characteristic 3 is not
semisimple. The irreducible representations are the trivial representation triv and the sign
representation sign; the standard representation stand is reducible and indecomposable,
with a subrepresentation isomorphic to triv and a quotient isomorphic to sign. For more
detail about these representations, see Section 1.2.

The aim of this chapter is to prove the following theorem.

Theorem 9.0.1. The characters and Hilbert polynomials of the irreducible representation
Ly (1) of the rational Cherednik algebra Hy .(S3,h) over an algebraically closed field of character-

istic 3, for any t,c and T, are given by the following tables.

p=3 T =triv

t=0, allc [triv]

t=1,alc [triv](1 4+ 2 + 222 + 23 + 2%) + [sign](z + 22 + 23)

p=3 T = sign

t=0,allc [sign]

t=1,allc [sign](1+ 2 + 222 + 23 + 2%) + [triv](z + 22 + 23)

p=3 T =triv T = sign

t=0, all c 1 1

1— 23\ 1—23\°
t=1,allc <1—z) <1—z)

[DeSul6], Thm 4.1
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In all cases, we calculate the singular vectors explicitly in the following lemmas.

Proof. The irreducible representation L;.(triv) is described via its singular vectors,

character and Hilbert polynomial in the following Lemmas:
e for t =0 and any ¢, in Lemma 9.1.1;
e for t =1 and any ¢, in Lemma 9.2.1.

The analogous descriptions of the irreducible representation Lt .(sign) can be deduced from
the description of L; _.(triv) and Corollary 2.8.3. Note that the Hilbert polynomials of
Ly o(triv) for generic ¢ are also known from Theorem 5.4.1 ([DeSul6], Theorem 4.1). O

91 t=0

Lemma 9.1.1. Let k be an algebraically closed field of characteristic 3, and let the values
of the parameters be t = 0 and ¢ € k arbitrary. Vectors T1 and Tz are singular in the
Verma module My .(triv). Consequently, the quotient My (triv)/(Z1,T2) is the irreducible
representation Lo .(triv) of Hy (S3,h) which is 1-dimensional and concentrated in degree 0,

with the character
XLo,c(triv)(z> = [triv]

and the Hilbert polynomial
HilbLoyc(triv) (Z) =1

Proof. Let us show that Z7 and T3 are singular in M .(triv) and the other claims will follow

immediately. We compute
id—(12) 2cld -(13) Cld —(23)

T1— T3 T1— T3 T3 — T3

cid_(12) _cid_(l?’) _2cid_ (23)> (T1)=c—c—0=0.

Ty — T2 T1 — T3 Ty — T3

Dwﬂam>=(—c >(%)=—f—20—0=0

Dyl = (
By symmetry,

Dy, —y3(T2) = (12). Dy —y (T1) =
Dy,—ys (T2) = (12).Dy, —y (T1) =
So, 71 and 73 are singular. The quotient of M .(triv) = S(h*) by the submodule generated

by these singular vectors is 1-dimensional with the character X, (triv)(2) = [triv] and the

Hilbert polynomial Hilby, (triv)(2) = 1. O
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9.2 t=1

Lemma 9.2.1. Let k be an algebraically closed field of characteristic 3, and let the values of

the parameters be t = 1 and c € k arbitrary. Vectors > and T3> are singular in the Verma

module M .(triv). Consequently, the quotient My .(triv)/(z13,%33) is the irreducible rep-

resentation Ly o(triv) of Hy(S3,h) which has the character
XLy o(eriv)(2) = [triv](1 + 2 + 22% 4 23 + 2%) + [sign](z + 22 + 23)

and the Hilbert polynomial

1—23\?
Hilbr,, (triv)(2) = 1+ 22 + 322 4228 + 2% = <1z) .
: —z

Proof. Let us first show that 712 and T3° are singular in M; .(triv). We compute

Dy —ys (T13) = <8y1—y3 - Cii_ (12) — QCid —(13) — cid _ (23)> (x—13>

Ty — T2 Ty — T3 T2 — T3

= —c(T1* + T1T2 + T2 + 201 + 27173 + 273° 4 0)
= —c (T + 71T + T2 + 2717 — 2717 — 2305 + 201 + 4T1T3 + 2757
= 3561 + 3331:1:2 + 375 ) =0

Dy () = (am Pl ) Bl ) NPV (23)) @)

$1—332 xr1 — I3 €T2 — X3

= xl +x1x2+x22—x12—$1x3—m3 -2 0)

. . — _____  _29
:c(mlxg—i—xg —i—afl +T1To — T1 —2x1x2—x2):0.

By symmetry,

So, 712 and Z3° are singular.
Consider the quotient M .(triv)/ <3T13, @3> by the submodule generated by singular vectors

770 and T3°.

To calculate its character, note that a basis ay = 7 + T2, a— = T1 — T2 of
b* respects its decomposition as an indecomposable extension of sign and triv, with a_
spanning a subrepresentation isomorphic to sign and a4 spanning a quotient isomorphic to
triv. From here,

[Mllyc(triv)/ <F13,T23>] = [sign] + [triv].
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For degree 2 the basis a?,a_a., ai tells us that

[Mfc(triv)/ (77°,73°) | = [sign] + 2[triv],

2

while for degree 3 the spanning set a? , a? a, a_ai, ai reduces to the basis a® a, a_ai and

tells us that
[Mic(triv)/ <$71375U723>] = [sign] + [triv].

Finally, in degree 4 the basis a%ai tells us
[Mf‘,c(triv)/ <T13,T23>] = [triv].
Further degrees are all 0. This shows that the character of M .(triv)/ <;T13,T23 > equals
XMl’C(triV)/<ﬂ37f23>(z) = [triv](1 4 2z + 222 4+ 23 + 2%) + [sign](z + 2% + 2%)

and the Hilbert polynomial is

1—23\?
. B 2 3, .4 _
Hﬂle,c(triv)/<ﬂ3’723>(z) =14+22432"+22°+2" = < T > :

It remains to show that M .(triv)/ <9713,:T23> is irreducible. We do so using a method

similar to the proof of Lemma 8.2.2, using the fact that the module M; .(triv)/ <xT3, ang> o
S(h*)/ (z1®,72%) is also a Frobenius algebra. We work with the basis {Z1'z2’ | 0 < 4,j < 3}.

Assume that U is a nonzero graded submodule of M .(triv)/ (Z1%,73°), and u € U some
nonzero homogeneous vector. Multiplying by a nonzero constant if needed, u can be written

as

’ 7
u=T1"T2" + Y agTr Tt

a’>a

for some a,b with 0 < a,b < 3 and a, € k. As U is a subrepresentation, the vector

1?712 al,22 bu:x12x22+ § :aa/x12+a ax22+a a 25512.’1322

a’'>a

is also in U (this is using 71° = 0).

So, any nonzero graded submodule U of M .(triv)/ <T13,T23> contains its top degree

which is spanned by Z72Z3°. As it is a submodule, it also contains

(y1 — y2)2(v1 + y2 + y3)*(T1°T2°) € U.
We now calculate this vector.
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First, note that it makes sense, because in characteristic 3 we have

(y1 —y3) + (y2 — y3) = y1 + v2 — 2y3
=y1+y2+ys=Y

hence Y € §. It satisfies (Y, as) = 0 for all ag, so Dy = dy. So, it is easy to calculate

2 2 22\ __ 2 —2— —_—2
Dy, Dyt (TUT27) = 2Dy, Dy oy (T T2 + T172)
2 S
= 2Dy1—y2 (2$1CL‘2 +T1°+ 727 + 21‘1.’E2)
_ 2 —2 —_— —2
= 2Dy1—y2 (.Tl + T1x9 + T2 ) .

We now use the fact that in characteristic 3,
B, e — ]
o2 = 2(T1° + 7172 + T2°),
so on this vector Dy, _y, = Oy, —y,, to get

2 2 22 S,
Dy Dy sty (TUT27) = 2Dy, 4,y (351 T T1T2 + T2 )
= 2Dy, —y, (277 + T2 — 71 — 272)

= 2Dy, —y, (T1 — 73)

id-(12) id-(13) id-(23)\,_ _
=2(8,_y —2 - -
<8y1 e s mem  Cmem ) )
=2(141-2c-2—c-1+c-(-1))
=4—12c=1.

This calculation lets us conclude that 1 € U. However, 1 generates the entire module
M o(triv)/ <T13,@3>, so we conclude U = M (triv)/ <JT13,T23>. This means we just
showed that every nonzero graded submodule of M .(triv)/ <T13,T23> is equal to the whole

module, so M .(triv)/ (Z1°,73%) is irreducible and equal to Ly .(triv). O
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Chapter 10

Auxiliary Computations in the

Rescaled Young Basis

For the rest of the thesis, the characteristic of the field k is p > 3. Therefore the category of
representations of S3 is semisimple and, as explained in Section 3.2, we can realise h* as a

subrepresentation of V*, with the rescaled Young basis
by =21 +x9— 223, b_=1x1 — 29

from Section 7.1. We will be using the bases of M;.(7) from Theorems 7.2.2 and 7.2.4, but
to manipulate those bases we will first need to know the action of all reflections on b4, b_,

which can be easily calculated to be:

(12).by = by (12).b_ = —b_
—by —3b_ by +b_

(13).by = %3 (13).b_ = % (10.0.1)
—by +3b_ by +b_

(23).by = %“’ (23).b_ = “; .

Lemma 10.0.2. If f is a singular vector in a representation of Hi (S3,h) over a field of

characteristic p > 3, and an element of an irreducible S3 subrepresentation T, then

0 T = triv,
.f =4 6cf 7 =sign
3cf T = stand.

Proof. As y.f =0 forally € b, 2.f =3 .gc(l —s).f and a simple calculation gives the

stated scalars. O

The main advantages of the basis by,b_ for h* are two-fold. Firstly, the rescaled Young

basis allows us to easily compute bases for S(h*) and for M, .(7) which are compatible with

131



Chapter 10. Auxiliary Computations in the Rescaled Young Basis

their decomposition as S3 representations, thus reducing the space in which we need to look
for singular vectors using Lemma 10.0.2. Secondly, calculating Dunkl operators in the rescaled
Young basis is more manageable than in the monomial basis. To elaborate the second point,
basis vectors from Theorems 7.2.2 and 7.2.4 are all a product of a large S3 invariant factor
which behaves very well under Dunkl operators and a small number of low degree expressions
in by,b_. Applying the Dunkl operators to such a basis vector v will result in a sum of finitely
many terms from this basis, and the number of terms will not depend on the graded piece v
is in, see for example Lemma 11.2.1. The main disadvantage of the basis b, b_ and resulting
bases for S(h*) and for M; .(7) is that multiplication (except by a symmetric polynomial) in

these bases is more involved than in the monomial basis.

In Proposition 3.2.2, we defined a map 7 : b* — V* by n(7;) = x; — % foralli e {1,...,n}
and this map extends naturally to a map S(h*) — S(V*). In Proposition 3.3.12 we define
o; = w(a;) for all i € {2,...,n}, where ; is the elementary symmetric polynomial &; of

degree i, under the induced quotient map S(V*) — S(h*). Therefore

oy = W(—Tl2 —T1x2 — 722)

1
= §($1SU2 +x123 + xzxg) 3 (93% + a:% + x%),

03 = 1(—T1°T3 — T1T2°)

= ($13§'2 + xlxg + l’le + :L‘lac3 + xgxg + m2x3)
2,4 3 22
+ 373(1;1 + 1172 + xg) 32 (%1%2373)

One can verify that in the bases {b3,b1b_,b% } for S?(h*) and {b3,b2b_,b;b%,b% } for S3(h),

these expressions become

—1 .9 2
o9 = 57 b +fb

— 1
3 2
03 = 57 336 52 ‘3b+b7.

Additionally, in Theorem 7.2.2 we defined
q=(v1 — z2) (21 — x3)(x2 — 3) = ¥3wg + T123 + X373 — TIA3 — T1TE — 2973
which in the basis {b3,b%b_,b,0%,b3 } for S3(h) becomes

_ 2 3
—b b_ —i-?b_

We gather all tedious multiplication formulas among by, b—, (—b2 + 3b%), 2b,b_ and ¢
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we will need for our computations of singular vectors later into the following lemma.

Lemma 10.0.3. The following identities hold in S(b*):

b = 60y — %(—bi +32)
b2 = —205 + é(fbi +3b2)
by -2b.b_=6-q—6-09b_
by - (=03 +3b2) =54 - 03+ 6 - 09by
b_-2b b =18-03—2-02by
bo - (=b% 4+3b2)=—6-q—6-02b_
(=b2 +3b%)> =72 0% — 108 - o3b; — 6- oo (—b2 + 3b%)
(—b2 +3b%) - 2byb_ =108 - 03b_ + 609 - 2b1 b
(204b_)% = 24 - 03 436 - a3by + 2 - oo (b2 + 3b2)
q-by=—-9-03b_ —1-02-2byb_

1
qbo =3 05b + 5 oo (—b2 + 3b%)
(=b% +3b%)-qg=—12-05b_+9- 05 2bb_
2b4b_-q=4-03by —3-03(—b3 + 3b2)

¢* = —2703 — 403,
Proof. We shall prove the first of these identities, and the rest are proved similarly by direct
computation. We have

—2.3, -2.3

2 2
Ll 34
—1 2 2 2
= (R ) B
hence bi = —609 + _71( - bi + 3b2_). O

In characteristic p { 3, to determine whether a homogenous vector is singular in M; .(S3, b, 7)
it is sufficient to check that it spans a representation of Sy and is in the kernel of the
Dunkl operator D,, as shown in the following lemma. Since y; is not an element of b it
may seem improper to consider the Dunkl operator D,, acting on M;.(S3,h, 7). However,
M; (Ss3,V,7) =2 S(V*)®7 is a Verma module for the rational Cherednik algebra H .(Sp, V)
and S(h*) ® 7 is a subspace of M; (53, V, 7). We shall see that this subspace is preserved by
all Dunkl operators, thus S(h*) @ 7 = M; .(S3,h, 7) is a module for H; .(S3,V,7) and we can

consider the Dunkl operators Dy, as acting on elements of M;.(S3,b,7).
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Lemma 10.0.4. Suppose that p t 3. Let f € M;.(Ss3,bh,7), or any of its quotients, be
homogeneous and suppose (12).f = +f. For alli,j, the vector f satisfies Dy, (f) = 0 if
and only if Dy, (f) = 0.

Proof. As shown in Lemma 4.2.3, Y = y; + y2 + y3 commutes with all x € h* and therefore
commutes with all f; € S(h*). Therefore for any tensor Y f; @v; € S(h*) @7 = M, +(S3,h,7)

we have
Dy(Ehou)=v(Lhou) =L rheun-Y fireu=3fovu=0
hence Dy = 0 as an operator on M .(S3,h, 7).

( = ) Suppose f € M, (7, S3,h) or one of its quotients is singular for H;.(Ss,b), so
Dy, . (f) =0 for all 7, j. We now have

(Dy1—y2(f) + Dy, —ys (f) + Dy1+y2+y3(f)) =0

Wl

D?Jl(f) =

as claimed. Notice that this argument fails precisely in characteristic p | 3.
( <= ) Suppose f € M;.(S3,h,7) or one of its quotients satisfies D, (f) = 0 and
(12).f = £f. Now
Dy, (f) = (12)Dy, (12)(f) = £(12)Dy, (f) = 0.

Furthermore,
Dys(f) = Dy1+y2+y3(f) - Dyl(f) - Dyz(f) =0,

so Dy(f) =0 for all y € V and in particular all y € b. O

When looking for singular vectors, we will make liberal use of Lemma 10.0.2 to reduce
the space where we are looking for singular vectors, and Lemma 10.0.4 to reduce the task
of finding N; jker Dy, . to the task of finding ker D,,. For that purpose, let us make Dy,

explicit as
id — (12) ® (12) — Cld —(13)

D, =to id—c
71 y1 & P P

® (13).

Let us note that for any reflection s € S, any vector v € M; .(7) or its quotient, and any
f € S(h*)%* we have

(ida S 8> (o) = . (ida S o 5) (). (10.0.5)

S S

This makes the calculation of Dunkl operators on our chosen basis of M;.(7) manage-
able. Let us now calculate the action of the divided difference operators and the partial
derivatives on all factors which appear in the bases of S(h*) and for M;.(7) from
Theorems 7.2.2 and 7.2.4.
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Lemma 10.0.6. The following identities hold in S(b*):

id — (12 id — (13
4=(2) gy o, W=y )y
T — X2 L1 — T3
id — (12 id — (1
&(b_) —9, ﬂ(b_) —1,
xr1 — X2 T — I3
id — (12) 9 9 id — (13) 9 9
—=(-b 3b2)=0, —=(-b 3b2) =3(-b 3b_
161—362( T +3b2) =0, x1—$3( L+ 307) = 3(—bs + 3b-),
id — (12 id — (1
=02) oy by gy, 9208 0y s
xr1 — X2 Ty — I3

id — (12)
r1 — T2

1 id — (13)

= —209 — = (—b> + 3b* _—

() = ~20 = (-8 4302). <0
Proof. Direct computation.

Lemma 10.0.7. The following identities hold in S(b*):

8y1(b+) =1, 8y1 (b—) =1,

Oy (=02 +3b%) = —2b, +6b_, 9y, (2b4b_) = 2b, + 2b_
-1 1

-1
Oulor2) = b+ by Do) = o

Iy, (q) = T(—bi +3b%) + 1 (2bsbo).

1
(—b% +3b%) + 5 (2b4b),

Proof. Direct computation.

1 1
(q) = 209 — 6(—1;2+ +3b2) + 5 " 2bebo.

O

O]

Finally, in the attempt to express the value of the Dunkl operator D,, on a vector in our

basis as a linear combination of basis vectors, we will often need the following computations.

Lemma 10.0.8. The following identities hold in S(b*):

1 -1
Oy (02) - by = o9 + — (=% + 3b%) + — (2bsb-)

12
3 1 1 1
(9y1(0'3) . b+ = 503 + 602b+ - 502()_ + 5(]
-1 2 2 -1
8y1(0'2) — o9 + ﬁ(_b—" + 3b_) + E(2b+b7)
3 -1 -1 —1
Oy, (03) - b = 503 + Fo-zbJr + ?021?7 + ?q

Oy, (02) - (b7 + 3b%) = —903 — 09b + 309b_ + 3¢
ayl

1 1
(03) - (—b% + 3b%) = 2035 — 303b; + Yo3b_ — 6ag(—bi +3b%) + —09 (201 b_)

' 2
Oy, (02) - 2b4b_ = =903 + 09b; + 02b_ — ¢
1 1
Oy, (03) - 2b4 b = 203 + 303b4 + 3o3b_ + 6ag(—b2+ +3b2) + 502(2b4b-)
-3 3 -1 1
8y1 (0’2) q = 70’3[)4_ + 50’3()_ + ?Ug(—bi + 3b2,) + 602(2b+b_)
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-1

1
1 o3(—b% +3b%) + 103(2040-).

1 -1
0y, (073) -0 = 5o8by —atb_ +

Proof. Direct computation.
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Chapter 11

Irreducible Representations of
H; -(S3,b) in Characteristic p > 3

for Generic c

The aim of this chapter is to prove the following theorem.

Theorem 11.0.1. The characters and the Hilbert polynomials of the irreducible representa-
tion Ly o(T) of the rational Cherednik algebra Hy .(Ss,h) over an algebraically closed field of

characteristic p > 3, for generic ¢, t = 0,1, and any 7, are given by the following tables.

Characters:
p>3 t =0, ¢c# 0 generic t=1,¢c¢F,
T = triv [triv] + [stand](z + 2°) + [sign]® s (2) - (1= 22)(1 = 2%)

[DeSa14], Prop 4.1

[sign] + [stand](z + 2?) + [triv]z®

[DeSal14], Prop 4.2

Xs(y+)(2) - [sign](L — 2%)(1 — 2%F)

T = sign
[DeSa14], Prop 4.1 [DeSal14], Prop 4.2
7 = stand | [stand] + ([triv] + [sign])z + [stand]z® | Xs(p-)(2) - [stand](1 —2P)(1 — )
[DeSa14], Prop 4.1 [DeSal14], Prop 4.2
where

1
Xs(p+)(2) = (1—22)(1-2%)

([triv] 4 [stand](z + 22) + [sign]zS) .
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Hilbert polynomials:

p>3 t=0, ¢ # 0 generic t=1,c¢F,

(1—2%P)(1 — 2°P)
(1-2)?
[DeSa14], Prop 4.1 [DeSal14], Prop 4.2

T=triv | 14+2(z+2%)+2°

(1—27)(1 - 2%)

T =sign 1+2(z+22) + 23

(1-2)?
[DeSal4], Prop 4.1 [DeSal}], Prop 4.2
2(1 — 2P)(1 — 2°P)
2
T = stand 242242z 122
[DeSal4], Prop 4.1 [DeSal4], Prop 4.2

In all cases, the singular vectors are known and described in the proof.

We note that [DeSald| already provides all of these characters and Hilbert polynomials,
not just in the case of S3 but in the much greater generality of S,,. We use their results
to conclude that the modules we construct are indeed irreducible. Our main contribution is
to give, in the case of S3, explicit singular vectors. Other than for its general interest, our
methods are used again in the next chapter to describe Ly .(7) for special ¢, which is a case
[DeSal4] does not discuss, as their methods are geometric and use the Calogero-Moser space

which is smooth precisely for generic c.

Proof of Theorem 11.0.1. The generic values of ¢ (¢ # 0 for t =0 and ¢ ¢ F), for t = 1) are
given in Proposition 4.1.3. For those values, the characters and Hilbert polynomials are given
by [DeSal4] in Propositions 4.1 and 4.2 of their paper [DeSal4], as discussed in Proposition
5.3.1 and Proposition 5.3.2 of Section 5.3.

For t = 0,1 and 7 = triv, sign, the Hilbert polynomial of L;.(7) for generic ¢ from Prop-
osition 5.3.1 and Proposition 5.3.2 coincides with the Hilbert polynomials of Ny .(7) from
Examples 4.1.1 and 4.1.2, so we conclude that L; .(7) = N; (7). In this case all the singular
vectors are known; for ¢ = 0 they are o; ® v for i = 2,3 and v € 7, and for t = 1 they are
of @uvifori=23andveT.

For t = 0,1 and 7 = stand, comparing the Hilbert polynomials of L;.(stand) for generic ¢
from Proposition 5.3.1 and Proposition 5.3.2 with the Hilbert polynomials of of N .(stand)
from Examples 4.1.1 and 4.1.2 shows that L, .(7) is a proper quotient of Ny .(7). For t = 0 the
singular vectors are computed in Lemma 11.1.1, and alternatively are available in a different
basis in Corollary 8.3.5. For t = 1 the singular vectors are computed in Lemma 11.2.8, and
the Hilbert polynomial of the quotient of N; .(stand) by these singular vectors is computed in
Lemma 11.2.19. Observing this polynomial is equal to the Hilbert polynomial of L; .(stand),

we conclude this quotient is irreducible. Its character is then straightforward to compute. [J
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11.1 The irreducible representation L .(stand)

characteristic p > 3 for generic c

The only remaining task for ¢ = 0 is to describe explicitly the singular vectors in M .(stand)
which is done in the following lemma. However, the result already appears in Section 8.3 but
the approach is slightly different because in characteristic 2 the results of [DeSal4] do not
apply, and irreducibility must be shown directly. Otherwise the approaches are similar by

considering each degree in turn, although different bases are used.

Lemma 11.1.1. Let k be an algebraically closed field of characteristic p > 3, and let the
values of the parameters be t = 0 and ¢ # 0. The irreducible representation Lo .(stand) of

Hy (53, h) is equal to the quotient of the Verma module My (stand) by the singular vectors

vy = —by ®by +30- @b
v_=by @b_ +b_®by
03 by
03 @ b_.

It has the character
Yo, (stant)(2) = [stand] + ([triv] + [signl)z + [stand]:?
and the Hilbert polynomial
Hilbp, ,(stana)(2) = 2+ 22 + 227

Proof. Let us check that the stated vectors are indeed singular. The vectors o3 ® by and
03 ®b_ are always singular, and span an S3 subrepresentation isomorphic to stand in degree
3. By Theorem 7.2.4, v, and v_ span an S3 subrepresentation isomorphic to stand in degree

1. Using the computations in Chapter 10 we calculate

id — (12 id — (13
Dy, (v4) = —c (xl_(x; ®(12) + 351—(373) ® (13)) (=by @by +3b_ @ b_)
—b, —3b_ by +b_
:—c<0+6®b+3®+2—3®+2+>20.

By Lemma 10.0.4, since Dy, (v4) =0 and (12).v4 = v4 we can conclude that vy is singular.

v = §<(23) + ;)u

so it follows that v_ is also singular.

Now

We now will calculate the character of My .(stand)/ (v+,03 ® by). By Theorem 7.2.4 we
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immediately see that the first two graded pieces are
[M&C(stand)/ (V4,03 ® by )] = [stand]
and
[M(ic(stand)/ (vy,03 @ by)] = ([triv + [sign] + [stand]) — [stand] = [triv + [sign].
Let us consider degree 2. By Theorem 7.2.4, a basis for M&c(stand) is

stand : 02 ® by
o9 ®b_
stand : — (=b1 +3b%) @by +3 - (2b4b_) @ b_
(=% +3b%) @b+ (2b4b_) @ by
triv:(—b3 +3b2) @by +3- (2b4b_) @ b
sign:(—b% +3b%) ®@b_ — (2b4b_) ® b,

Also using Theorem 7.2.4, a basis for (vi) N Mg (stand) is

trivibiog +3b_v_ = (b3 +3b%) @by + 3 - (2b4b_) @ b_
sign:biv_ —b_vy = —((—b3 +3b2) @b — (2b4b_) @ by)
stand : —byvy +3b_v_ =02 ® by

byv_+b_vy =02®0b_.

Note this shows that oy ® by are in (vy), which explains why they do not show up in the
statement of the lemma even though they are singular for every c¢. Taken together, this means
that

[M&C(stand)/ (vg,03 ® by)] = [stand].

Let us consider degree 3. By Theorem 7.2.4, a basis for M&C(stand) is

stand : 03 ® by
03 ® b_
stand : ¢ ® b_
q® by
stand :02(—by ® by +3b_ ®@b_)
o2(by ®b_ +b_ ®by)
triv:oy(by ® by +3b- ®b_)
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sign:oo(by ®b_ —b_ @ by).

As our considerations in degree 2 show, 0; ® by € (vy,03 ® by), so all the above vectors are

in (vy,03 ® by) except maybe ¢ ® b. However, we note that
—(=b% +3b% vy +3- (2b4b_)v_ = 10803 @ by + 18¢ @ b_,

SO
qRb_ € <1}i,03 & b:t>

and so is ¢ ® by. This shows that
[M&C(stand)/ (vg,03®b1)] =0,

and consequently so is [Mol“,c(stand)/ (vg,03 @ by)] for all k > 3.
This shows that the module M .(stand)/ (v4, 03 ® b+) indeed has the character stated in
the theorem. The irreducible module Ly .(stand) is some quotient of My .(stand)/ (v4, 03 ® by),

but [DeSal4] Proposition 4.1 tells us they have the same character and are therefore equal. [

11.2 Singular vectors in M .(stand) characteristic p > 3 for

generic c

The remaining task when ¢ = 1, 7 = stand and c is generic is to explicitly describe the
singular vectors in M; .(stand). We will do this by computing Dunkl operators using the
basis from Theorem 7.2.4.

By Proposition 3.4 of [BaChl3a], for generic ¢ singular vectors only appear in degrees
divisible by p. By Lemma 10.0.2, any singular vectors in degrees divisible by p are in the
isotypic component of stand. As stand is irreducible, it is enough to look for singular vectors
in the 1-dimensional subspace of stand which restricts to the trivial representation of Sy (in
other words, the image of b4 under any isomorphism from stand). By Theorem 7.2.4, a basis

of this part of stand in degree kp is the union of the bases:

{0805 @by | 2a+3b=kp 1},

{0805 (~=by @by +3b_®b_) | 2a+3b=kp—1},

{o§0% - (—(=b2 +3b2) @by +3(2b1b_) ®b_) | 2a+ 3b = kp — 2},
{agagq@) b_ | 2a+ 3b=kp — 3}.

By Lemma 10.0.4, looking for singular vectors in degree kp means looking for a linear

combination of the above vectors which is in the kernel of D,,. We first calculate the values
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of the Dunkl operator D,, on the vectors listed above.

Lemma 11.2.1. 1. Let a,b,k € Ny, 2a + 3b = kp. Then

Dy (o3 @) = () o8 1o by by + 30 wb)

b
+ (36> oSt (b2 +3b2) @by + 3(2b4b_) @ by).

2. Let a,bk € Ny, 2a+3b=kp—1. Then

Dy, (—0505b4 @ by + 305050 @b_) =
~1
= (2> 0808 @ (by —3b_)

—b
- (6> os ot (b, @by —3b_ @by +3by @b +3b_®@b_)

+ C;‘) o5 tob (b2 +3b2) @ by — 3(2b4b_) ®@ by
+3(—b2 +3b%) @ b_ + 3(2b4b_) @ b_)

—b
+<2 )0203 '@ (by +0-).

3. Let a,b,k € Ny, 2a 4+ 3b=kp — 2. Then

Dy, (—0505(—b% +3b2) @ by + 30505(2b1b_) @b_) =
= (—2b)ost?ob !t @ (by — 3b_)
+ (9a)os™ 1O'g+1 ® (by — 3b_)
+ ( CL)0'20'3 (b+ &® b_;,_ — 3b_ X b.l,_ + 3b+ X b_ + 3b+ X b_)
+ (18¢)050% (by @b —b_®b_)
b
+ <6> os ol ((—b3 +3b2) @ by — 3(2b1b_) @ by

+3(—b% +3b2) ®@b_ +3(2b1b_) ®b_)
+(=3a)oy o © (by +b).

4. Let a,b,k € Ng, 2a+ 3b=kp—3. Then

Dy, (030%q@b_) = cof™ab @ (by —3b_)

b
+30_a+2b1(b ®b_—b ®b)

3
- Eaag_lag"ﬂ (b @b —b_®@b_)+
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+ (—%) agag ((—b%_ + 352_) ® by — 3(2b4b-) @by

+3(—b% +3b2) @b +3(2b4b_) ®b_).

Proof. Direct computation using the auxiliary results in Chapter 10. We shall prove part (1),

but the other parts are proved similarly.

Since 0§a} is S3 invariant, we have

1—
< i ®s>(0§0§®b+) =0

Qs

for all s € S and all a,b € Ng. Hence

= (8y1 (02)-a- agflag + 8y1(ag) b 050371) ® by

—1 —1
= <6b+ + 2b> ca-05 ol @b,

1
(—b% +3b3) + 12(2b+b_)> b-oSob @by

- (‘a) o3 oy (by @by +3b_ @ by)

O]

Let us first look for singular vectors in degree p first (which will turn out to be enough).
Parametrising the integers a, b which label the basis from the start of this section like in the

proof of Lemma 7.2.1, we are looking for a vector in degree p of the form

p=3 __

= Y ajoyr Vodt e, (11.2.3)
0<j<| 252 ]
p=1l_ g, .
+ Y Bioyt Vo¥ - (~bi @by +3b-®b)
0<j< |25t ]
P=5_3; -
D DT 2L (L (<2 4+ 362 ) @ by +3(2byb_) @b_)
0<j<| 252
P=3_3; .
+ Z 05057 3JU§] q®b_
0<5<| 252

for some «, 5;,7;,9; € k[c], with the property that D, (v4) = 0.

Lemma 11.2.4. If a vector vy of the form (11.2.3) satisfies Dy, (v4) =0, then
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1. aj =0 forall j;

2. ForallO<j<LpTJ

25+
%_3m¢+m@“'

Note that if p = 2 (mod 3) then there is also a coefficient yp-5, which this lemma puts
6

no conditions on. Otherwise this lemma determines all «; and all ~; in terms of 3;.

Proof. The right hand sides in each of the expressions in Lemma 11.2.1 are linearly

independent, so we will be reading off their coefficients in the expansion of the equation

Dy, (v4+) = 0 using Lemma 11.2.1.

1. The coefficient of (by ® by + 3b_ ® by) in the equation Dy, (v4) = 0 expanded as in

144

Lemma 11.2.1 equals

17;3_3 p=3 . .
]

0<j<| 252

This tells us that o =0 for all 0 < j < LPTJ except maybe for j such that

P=3 _gi=0. 0<j< {HJ

2 6
Keeping in mind that the equation 252 —35 = 0 is in k but the inequality 0 < j < LT:SJ
is in Ny, this is equivalent to
. p—3
=——¢cN
J 6 0-

However, this means that 6 | (p — 3) so 3 | p, which is impossible as p is a prime and

p > 3. In conclusion, no such j exists, so a; = 0 for all j.

. The coefficient of ¢ ® (b4 + b_) in the equation D, (v4+) = 0 expanded as in Lemma

11.2.1 equals
=27\ BF-3j 951 p—>5 —3j—1 2541
Y. B <2> o7 oy Y (-3 Y o3t =0.
0<j<| 252

Noting that the first summand is zero for j = 0, we perform the change of summation

variable j — j 4+ 1 to rewrite the sum as

-3 3 —3§
- X BulGrne® U (F) X we-s-eet et -0

7 . _
0<5<| 257 ) 0<5<[ 252

The boundaries of these two sums are different precisely when there exists an integer

j with E=- T < j < B2 which is equivalent to 6 = p—6or 6 =p—5. If 65 =p —6
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then 6 | p which is impossible because p is prime. If 65 = p — 5, which happens exactly
when p = 2 (mod 3), then the summand with coefficient v,-5 is zero, so for any p the
6

above equation becomes

> <—5j+1 (G+1)+ (;) v (p—5— 6j)> e ot — 0.

0<j<| 257

This means that for all 0 < j < Lp%q

2 +1)

v = mﬁwl

Using Lemma 11.2.4, any vector vy of the form (11.2.3) which satisfies Dy, (v4) = 0 is of

the form
vy = Z 6] 37 23 ( by @by +3b_ ®b_ ) (11.2.5)
0<j<| B3t ]
+ ) Mﬂma;_?’j S (—(—b2 4+ 302) @ by +3(204b-) @ b_)
0<5<| 257 3(6 +5)
<<

p—2

+ 5p£2 (mod 3) ~ ’YP*5 UgT (_(_bi + 3172,) ® b+ + 3(2b+b_) ® b_)

== 3
T Y boy Ue¥ qeb
0<j<| 252

where 0, =2 (mod 3) denotes the delta function

5 1 ifp = 2(mod 3)
=2(mod 3) —
=21 ) 0 otherwise.

Next, we want to establish the conditions on f;, d;, and (where needed) vp-s.
6

Lemma 11.2.6. For a vector vy of the form (11.2.5) the condition Dy, (v4) = 0 is equivalent

to the system of equations:

1. If p = 1 (mod 3):

4G+ +1)
3(65 +5)

5j+1 + C(Sj =0 (I)
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. 1
For all 0 < j < 2= —2
12(j + 1)c 2(j + 1) 3(65 + 3)
A 5. 5. =0
(6j +5) Birr+ =50 IR

¢ Bp-1 —30p1_; =0.
6 6
2. If p = 2 (mod 3):
Forallogjgp%f’—l

6 +1
2

49+ 1)(27+1
B — U ?IGj)(—i—jE);— )5j+1 +cd;=0

4
2Bp-5 + 5Vp=5 + cops =0
6 3 6 3

2(j+1)

3(65 + 3
. +(J )

4

5j+1 5j =0

-3
Yp—s * 18¢+ —=0p-5 =0
6 2 76

(IT)

(IT)

)

(11)

(IT)

Proof. We look at all the right hand sides of the values of Dunkl operators on basis vec-

tors from Lemma 11.2.1, and setting their coefficients in Dy, (v1) to be 0 get the following

equations:

(I) From the coefficient of ®@(bs — 3b_):

0= X (F)aer e
0<j<| 25
FOY g e e
0<ji<[ 257 )
20 41 -5 P=5_3i 1 o
+ Z ?,(((;‘7'—:_5))67'+1‘9<p2_3j>0-22 37 1O_§J+2
0<j<| 257 ] ’

p—2 p=2_
+ 6p52(m0d3) ’ 71’65(_2)< 3 )0—30—33

P=3_3i11 o,
. 2 J 2]
+ E 0j - coqy o5
0<i<| 252
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~3j -4 +1)(2j +1) ~3j
= Z ( >BJ ) ’ 2] + Z 3(6j + 5) ﬂ]—i-l 2 ’ 2J

0<j<| 25t 0<5<|

. p=l_3; o —2)(p—2 2.225
+ Z (_3])6j0'22 JO’? + 6p£2 (mod 3) "Y% ()(3)0-30-3 ¢

0<5<| 25

—3j _2j
+ E dj - 602 oy’
0<j<| 252

We now distinguish two cases:

1. If p = 1 (mod 3), then {uj = %, Op=2(mod3) = 0. Reading the coefficient
p=1_a: o
of 042 330?

0<j <27 that

we get that the above equation is equivalent to requiring for all

6j+ 1
2

—4(i+1)(25 + 1)
3(65 +5)

Bj + ,3j+1 + 05]' =0.

which gives equation (I) from the Lemma. For j = 2-1 the coefficient of 02 Y op

gives 0 = 0, which is always satisfied.

2. If p = 2(mod 3), then | 5= 1J = |25 B3| — 75, Lp%?J = %—1 and 0, =2 (moq3) = 1.

Reading the coefficient of a _3JU§] we get that the above equation is equivalent
to requiring for all 0 < j < 22 —1 that
—(65+1) 4G+ 1)(25+1)

Bj + Bj+1 +cd; =0,

2 3(65 +5)
For j = % the coefficient of agagj gives one additional equation

—-p+4 -2
p ﬁj%—?( —2)7% +05% =0.

Using that p = 0 € k we get exactly the equations (I) and (I’) from the Lemma.

(IT) From the coefficient of (b4 ® b— —b_ @ b_):

2 +1 —39 217 5 1
0= Z Mﬂ]—i—l 18¢ - O' J 2j+1+552m0d3’71)g5 18¢ - os +

3(6j + 5
0<j<| 257 (65+5)
20 +1) 25 35 91y —3(25° = 3j) 2535 550y
- 5j+1(3)022 LA DI LR P A
OSJSLPTTQJ OSJ'SL%J

We now distinguish two cases:
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1. If p = 1 (mod 3), then for all 0 < j < 2.t —2

12(j + 1)c
(65 +5)

2 +1
Bj+1+ (]3 )5j+1+4)(5j=0.

For j = p L1 we get an additional equation
¢ Bp=1 —30p1_; =0.
6 6

which are exactly equations (II) and (II’) from the Lemma.

2. If p = 2 (mod 3), then for all 0 < j < B2 —1
12(j + 1)c 2(j+1) 3(65 +3)
Ty 45y T g Gt 0 =0
For j = 5 we get an additional equation

-3
6 2 %

which are exactly equations (II) and (II’) from the Lemma.

(IIT) The coefficient of by ® by — 30— @ by +3by @ b_ +3b_ ® b_ in Dy, (vy) = 0 is
automatically satisfied when vy is of the form (11.2.5).

(IV) From the coefficient of (—b2 + 3b%) ® by — 3(2b4b_) ® by + 3(—b3 +3b2) @ b_ +
3(2b4b_) ® b_ we get conditions proportional to (I), (I’).

O]

Lemma 11.2.7. For every p > 3, the system of equations from the statement of Lemma

11.2.6 has a unique solution up to overall scaling.

Proof. 1. If p = 1 (mod 3) and we write p = 6k + 1, then the unknowns are Sy, 51, . .., Ok
and &g, d1,...,0k_1. Ordering them as

Bka 5]{?—17/8]6—17 e 7507 ﬁ()a

we can treat equations (I),(II),(II") as recursions that let us calculate each unknown
from the previous two. More precisely, choose (i to be arbitrary, then use (II’) to

calculate
c
Op—1 = 3 B

After that, alternating (I) and (II) lets us calculate the remaining unknowns recursively:

o —4 12(j+1)c _ 2(j+1) A
%= 3(6j+3>< 615 3 5J“)’
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8 2 <—4(j+1)(2j+1)

_ - 5 ).
6j + 1 3(6j +5) ’8”1“9)

2. If p = 2 (mod 3) and we write p = 6k + 5, then the unknowns are Sy, 31, ..., Bk, V&,
and dg, d1,...,0r. We allow v to be arbitrary, then use (II') to calculate

514 =12c- Yk
and (I') to calculate
2 c
= —=v — = 0.
P = =37 = 5%

After that, alternating (I) and (IT) lets us calculate the remaining unknowns recursively,

for 0 < 5 <k —1 in decreasing order of j, as

 —16(j +1)e bl 8(+1) o
T 365+5)(2j + DT 2r2j 1) T
8+ 1)(2j + 1) %

- , 5i
=G a6+ T T a1

O

Corollary 11.2.8. For every p > 3, t = 1, and ¢ ¢ F,, there is a 2-dimensional space
of singular vectors in Mf’c(stand). These singular vectors vy, v_ are unique up to overall
scaling, and can be determined by Lemma 11.2.7 by choosing a nonzero constant as the first

term and applying relations recursively.

Example 11.2.9. When p = 5, a solution of this system is
Y0 =1,80 =2¢,5 =1— ¢,
leading to

vy =(1—c*os - (~by @by +3b_2b_)

+ 03 (—(=b3 +3b%) @by +3(2b4b_) ® b_) +2c02 - gD b_,
v =(1—-c*os-(by @b_+b_®by)

+ 03 (0% +3b2) @b_ + (2b4b_) @ by) + cor - q @ by

Example 11.2.10. When p = 7, a solution of this system is
B =2, 8 =3¢, Bo=6c"—2
leading to
vy = ((602 —2)o5 +203) - (—by @by +3b_®b_)
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p—>5
2

+ 40,2 o3 (—(—b% +3b%) ® by +3(2b1b_) ®b_)
+3co% - q@b_,

v_ = ((6c* —2)03 +203) - (b @ b_ +b_@by)
+ 405%503 ((—b% +3b2) @ b_ + (2b4b_) ® by)
—co?-qRb_.

Example 11.2.11. When p = 11, a solution of this system is
1 =3, 01 =3¢c, 1 =42 +9, 6o = c(6¢® + 1), fo=c*+52+4
leading to

vy = ((c* +5¢% +4)05 + (4c* + 9)0503) - (b @ by +3b_ @ b_)+
+ (2¢ = 1)odos (—(—b2 +3b2) @ by + 3(2b1b_) @ b_)
+¢(6c® +1)o5 - q@b_ 4 3co03 - qRb_,

v_ = ((c* +5¢% +4)o5 + (42 +9)0503) - (by @ b_ +b_@b)
+ (22 = 1)o3o3 ((—b% +3b%) ® b_ + (2b4b_) ® by)
—4c(6c* +1)05 - q @by — co203 - q@ by

Example 11.2.12. When p = 13, a solution of this system is
Ba=3,01=c,B1 =944, 6 = 0(702 —2), 8y = &+ 6¢2 + 3,
leading to

vy = ((¢* +6¢” + 3)08 + (9 + 4¢*) o303 + 303) - (—by ® by +3b_ @ b_)
+ (9 + 4c*) o303 — 209073) - (—(=b% +3b2) @ by + 3(2b4b_) @ b_)
+ (0(702 —2)o5 + ca%a%) qgRb_,

v = ((¢" +6¢* + 3)08 + (9 + 4c*)0303 + 305) - (b @b +b_ @ by)
+ ((9 + 4c*) o305 — 20903) - ((—b% +3b2) @ b_ + (2b4b_) @ by)

-1
+ 3 (c(7¢® — 2)05 + co303) - q @ by

Calculating a determinant

The first part of this section showed that for every p > 3, at ¢ = 1, and for all ¢, the space

of singular vectors in the stand isotypic component of Mﬁc(stand) is 2-dimensional and
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spanned by vy, v_ from Corollary 11.2.8. They satisfy

2

1
Dy, (v4) = Dy, (v=) =0, v_= 3<82 + 21d> (R

and their span is isomorphic to stand via b4 — v4. We would now like to understand the
submodule generated by these two vectors. We do that in the remainder of this section, using

an argument similar to that in the proof of Lemma 8.3.3.

Let us name the components of vy,v_ as

v+:a++®b++a+_®b_

vo=0_4+ @by +a__ @b_.
To understand the submodule generated by v, v_, we must analyse the determinant
A=aiia__ —a,_a_, € S?(h").

Theorem 11.2.13. 1. A is an invariant in degree 2p.
2. A is in the kernel of Oy, .
3. A is of the form A = f(c) - o, where f(c) € k[c] is a polynomial in c.

Proof. This proof does not use the explicit form of v from the previous subsection; everything

follows from the few equations displayed above this theorem.

1. The facts that

1.4 = V4  S1.U0- = —0U_

imply that
$1.044 = Q4+, S$1.04— = —Q4—, S$1.0—4 = —Q—4, S1.—_— = a—__.

From this immediately follows that

s1. A=sy.(ayra_ —ap_a_y)
= (s1.044)(s1.0--) — (s1.04-)(s1.0-4)
=appa— — (—ay-)(—a_y)
=044 0—— — a0y
= A.
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To prove the sy invariance of A, let us expand the formula

2 +1'd
v- =gl s2+ 5id Juy

as

G4y @by +a__Rb_ =

2 1
= g (82 + 21d> (CL++ ® b_;,_ + Ay ® b_)
2 —by +3b_ by +b- 1 1
=~ ((s2.a44) ® ——"— + (s2.05_) ® — toary @by +ay- @b
3 2 2 2 2
which leads to:
1
G-t =3 ( — (s2.044+4) + (s2.04-) + a++> (11.2.14)
1
G- =3 <3(52.a++) + (sg.a4—) + a+>

Using this we can rewrite A as:

A= Q44— — A4 Q4
1 1
=0+t 3 3(s2.04+) + (s2.04—) + ay— | —ay—- 3\~ (s2.04+4) + (s52.04—) + aq+

1 1 1
= ay4(52.04.4) + §a++(52.a+,) + §a+,(52.a++) - §a+,(52.a+,).

This form makes it clear that A is an s9 invariant, as the action of sy preserves the first
and the fourth summand and swaps the second and third. So, A is invariant under the

generators s; and sy of S3, so it is an S3 invariant.

2. We can use the formulas of (11.2.14) to deduce:

1

(s2.a44) = 1 <a++ —a4— —3a_4 + 3a__> (11.2.15)
1

(s9.a4-) = 1 ( — 3044+ —a4— +9a_4 + 3a__).

Similarly, the formula for the action of sy on v_ gives us:

1
(s2.a_4) = i ( — G4y + a4 —a_4 + a__) (11.2.16)

1
(sz.a,,) = Z <3CL++ + a4 — + 3a,+ + (I> .

From this we can also easily deduce formulas for (13).a44 etc.
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As we know the action of the group on all a1+, we can expand Dy, (v+) = 0 to get

Oy, (asy) = 2(.@1_7—0953) (a+_ - Sa_+> (11.2.17)
Oy, (aq—) = $1_—205Ez ay_ 2(1:176_:%) < —3a44+ +2a4_ + 3a>

Oy (a—4) = o 2_Cx2a_+ - 2(93176_333) < —a4y +2a_ 4 + a__>

Oy, (a——) = 2(93170—%) <a+_ - 3a_+>.

Using (11.2.17) we calculate

9y, (A) = Oy, (aq4)a—— + Oy, (a——) a4y — Oy, (ay—)a—y — Oy, (a—)aq—

3. By (1) A is an invariant of degree 2p, and by (2) it is in the kernel by J,,. As it is
symmetric, it follows that it is also in the kernel by 9, and dy,, so A is a p-th power of
a polynomial. The only symmetric polynomials in degree 2p which are also p-th powers

are scalar multiples of o%.

O]

In order to analyse the module M; .(stand)/ (v4,v_), we will need to show that vy, v_
are (for generic ¢ and some special ¢) as independent as they can possibly be, and this will
be done by showing that A is nonzero (for generic ¢ and some special ¢). This will include

analysing the polynomial f(c) € k|c|] from Theorem 11.2.13 and its zeroes.

Lemma 11.2.18. Let p > 3, t = 1, and c be generic. Let f(c) € k|c| be the polynomial from
Theorem 11.2.18.

1. It satisfies f(c) = % (360 — 60) (380 + do);

2. All coefficients B; are even and all §; are odd polynomials in k|c]|.

p—1
7

3. If p= 6k +1 then deg B; = 2k — 27, degd; =2k —2j — 1, and deg f =
4. If p =06k 45 then deg B; =2k — 25 + 2, degd; =2k —2j+ 1, and deg f = %.
5. The polynomial f(c) is not identically zero.

Proof. For part (1), Theorem 11.2.13 (3) showed that A = ayjia__ —ay_a_4 is a scalar

multiple of of, so we now calculate the scalar by considering only the parts of a4, a__, ay_
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and a—_4 which will contribute to a power of oo. More specifically, any term divisible by o3

will not contribute to A. Disregarding all such terms, we can write:

atq = 500;%1 (=by) +o3-(..0)

p—1

p=1 p=3

ar— = Pooy? -3b_+0005° -q+o3-(...)
p=1 1 =3

a—t = fooy*® '[L—gfsoffz2 qt+oz-(...)

—1

a—_ = Booy? by +oz-(...).

I3

From here we then compute:

A=a4ya__ —ay_a_4 =

p—1 —1 p—3 p—3

= Booy? (—bi)Booy? by — (50052131)_ +50022q> (5005211)_ - ;50022(1) +og- ()
= Bob (=02 — 3b%) + %5303‘3(12 +o3-(...)
= 126205 + %5305‘3(—2705 —403) +a3-(...)
= <125§ - §6§> ob+o3-(...).
Comparing this with Theorem 11.2.13 (3) shows that A = f(c)o} with
fle) = 1265 — %53 = g (380 — do) (380 + do) -

Parts (2), (3), and (4) follow from the recursions in Lemma 11.2.7.
For part (5), it is enough to see that the polynomial f(c) is nonzero at a specific point ¢ = 0.

Then 6; = 0 for all j and f(0) = 1233, which is nonzero by the recursions in Lemma 11.2.7.
O

We will now use this determinant calculation to analyse the modules M; .(stand)/ (vy,v_),
and M (stand)/ (v4, 0 ® by).

Lemma 11.2.19. Let p > 3, t =1, and c be generic.
1. The submodule (vy,v_) of M .(stand) is isomorphic to M .(stand)[—p].
2. The vectors o ® by, ob ® b_ are contained in the submodule (vy,v_) of M (stand).

3. The wvectors of ® by and of ® b_ are not contained in the submodule (vy,v_) of
M, (stand).
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4. The module M .(stand)/ (vi,v_, 0% ® by,08 @ b_) has the Hilbert polynomial:

(1—27)(1 - 2%)
e

5. The module M (stand)/ (v, v_,0% ® by,08 @b_) is irreducible and thus equal to
Ly .(stand).

Proof. 1. The S3 map ¢ : stand — Mﬁc(stand) given by ¢(by) = vy induces a map
of Hi .(S3) modules ¢ : M .(stand)[—p] — M (stand). Its image is the submodule

(v4,v_), so all we have to show is that its kernel is zero.

Assume that A, B € S(h*) are such that A ® by + B ® b_ is in the kernel of ¢. We can
assume without loss of generality that A, B are homogeneous of the same degree. Then
we have

p(A®b, + B®b ) =0

which can be rewritten as
A-vy+B-v_=0

and again as the system in S(h*)

A'CL+++B'CL7+:0
A-ay_+B-a__=0.

Considering this as a linear system of equations, we note that its determinant is, by
Theorem 11.2.13 and Lemma 11.2.18, equal to f(c)oh, which is nonzero for generic c,
and thus for generic ¢ the only solution of this system is A = B = 0. This shows
that the kernel of ¢ is 0, so it is injective and its image (v4,v_) is isomorphic to
M, (stand)[—p].

2. Checking if the vector b ® by is contained in the H;.(S3) submodule (vi,v_) is
equivalent to trying to find solutions A, B € S(h*) such that
A®by+B®b_=0b@b,.
This can be rewritten as the system

A-a+++B-a_+:U§

A-ay_+B-a__ =0,
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156

which, for generic ¢ where its determinant is nonzero, has a unique solution

o a__ 1
A= 22 = ca__
A f(e)
—obay_ 1
B = 2 - “Qy_.
A flo) T

This solution, which is a priori a rational function in h*, is actually a polynomial
A, B € S(b*). So, whenever f(c) # 0, the vector ob ® by is contained in (vy,v_).

The vector ob ®b_ can be obtained from o ® b, by the S5 action, so it is also contained

in (vy,v_).

. Similarly, checking if the vector of ® by is in (vy,v_) ends up being equivalent to

checking if there are A, B € S(h*) such that
ARby+Bb_ =0t ® by,

which has a unique (rational) solution

O'p ¢ —
A= 0
f(e)oy

—O'p L -

B= 2 _—"=
fle)og

These A, B are rational functions in h* and not elements of S(h*), and they are the
only solutions when f(c) # 0. So, we conclude that 0% ® by and consequently of @ b_

do not lie in (v4,v_).

. The Hilbert series of module M; .(stand)/ (v4,v_, 0% ® by, 0} ®b_) can be calculated

as

Hﬂle,c(stand) (Z) — Hﬂb<v+7v_> (z) — Hﬂb<o’§®b+,¢7§®b_> (Z) + Hilb<v+,v_>ﬂ<o§®b+,o'§®b_> (Z)

We know that

. 2
Hilbay, (stana)(2) = =

By part 1 of this Lemma, (v4,v_) = M; .(stand)|[—p|, and similarly (6} ® by, 0% @ b_) =
M, (stand)[—3p], so

2zP 223P

Hilbe o) () = G552 Hilb(oran, om0 ) (2) = =7

The remaining task is to describe (vi,v_) N (04 @ by, 0h @ b_).

Let v be an arbitrary element of (vy,v_) N (o} ® by,0f ® b_). This means that there
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exist A, B,C, D € S(h*) such that
v=Avy + Bv_ =Col @by + Dok @ b_. (11.2.20)

As before we get
o C‘CL__+D'CL_+

A D
fdh 7

B: —C'CL+_+D'G++0_p
f(c)ah o

Given that o9 and o3 are algebraically independent so their powers are coprime, it
follows that of needs to divide C-a__+D-a_y and —C-a4_ + D-ay, and o} needs
to divide both A and B. In other words, there are A’, B’ € S(h*) such that

A=A"ot, B=B oL
Rewriting equation (11.2.20) we get
v=A'cbv, + B'ofv_ = Col @by + Dol @ b_.
For any choice of A’, B’ € S(h*) there are unique C, D € S(h*) satisfying this, given by

C = A/(l++ + B/(l,Jr
D=Aa,_ +Ba__.

This lets us conclude that v is in the submodule generated by ohv; and ofv_, and that
(v, v-) N {oF @by, 08 ®b_) = (ohvy, ohv_).

By a similar argument as before, this module is isomorphic to M .(stand)[—4p], its
Hilbert series is

. 24P
HiIb(opu, 030 ) () = T3

and thus the Hilbert series of M .(stand)/ (vy,v_, 04 ® by, 0 ® b_) equals

2 22P 22%P 2% _(1—2P)(1—2%)

I—22 (=27 (=22 (=22 7 (-2

5. By the results of [DeSal4] discussed in Section 5.3, the Hilbert polynomial of the module
%. The module L; .(stand) is a quotient of
M, o(stand)/ (vy,v_, 0% @ by, o ® b_), which itself has the same Hilbert polynomial.

So, we conclude that the singular vectors we found are indeed all the singular vectors,

L .(stand) for generic ¢ equals 2
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and
M, (stand)/ (vy,v_, 0% @by, 0h ®b_) = Ly (stand)

is irreducible.
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Chapter 12

Irreducible Representations of
H; -(S3,b) in Characteristic p > 3

for Special c

We now turn our attention to special values of the parameter ¢, which are not covered by
Theorem 11.0.1. The value of the characteristic remains p > 3. In this case, when ¢t = 0 the
only special value of ¢ is ¢ = 0, and when ¢t = 1, the special values of care ¢ € {0,1,2...,p—1}.
We will sometimes consider these ¢ as elements of Z to allow us to write inequalities such as
0 < ¢ < p/6. At other times (when they are coefficients in the algebra relations), we consider
them as elements of k as before.

The aim of this chapter is to prove the following theorem.

Theorem 12.0.1. The irreducible representations Ly .(7) of the rational Cherednik algebra
H; .(S3) over an algebraically closed field of characteristic p > 3, for special ¢, t = 0,1, and

any T, are described by the following tables.
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Characters:
p>3 T =triv
t=0,¢=0 [tI‘iV}
t=1,¢c=0 Xs(w(h*)(z)
t=1, Xs@m)(2) - ([triv] — [stand]z3¢TP + [sign]22(3c+p))
0<c<p/3
t=1, Xs@m)(2) - ([triv] — [stand]z3P + [sign]22(¢P))
p/3 <c<p/2
t=1, Xs(y+)(2) - ([triv} - [sign]zGC_?’p)(l — 2P)
p/2 < c<2p/3
t=1, Xs@)(2) - ([triv] — [stand]z3¢2P + [sign]z2(3e= %))
2p/3<c<p
p>3 T = sign
t=0,c=0 [sign]
t=1,¢=0 Xsw) () (2) - [sign]
t=1, Xs@+)(2) - ([sign] — [stand]zP—3¢ + [triv]z2(p_3c))
0<c<p/3
t=1, XS(b*)(Z) . ([sign] — [triv]z_6°+3p)(1 — 2P)
p/3<c<p/2
t=1, XSy (2) - ([sign] — [stand]z?P—3¢ + [triv]z2(2p_3c))
p/2<c<2p/3
t=1, Xs(v+)(2) - ([sign] — [stand]z~3¢ + [triv]z2(4P=39))
2p/3<c<p
p>3 T = stand
t=0,c= [stand]
=1,¢=0 Xs(5+)(2) - [stand]
t=1, Xs(p+)(2) - ([stand] — [triv]zP~3¢ — [stand]zP — [sign]|2P "% + 2[sign]2?P)
0<c<p/3
t=1, Xs(p+)(2) - ([stand] — [sign]z 7773 — [triv]2® 3¢ — [sign]2PT3¢ — [triv]2"P7% + [stand]z*P)
p/3<ec<p/2
t=1, Xs(p+)(2) - ([stand] — [triv]z3T2 — [sign]23¢ — [triv]z 3P — [sign|23“T? + [stand]z?P)
p/2<e<2p/3
t=1, Xs(y+)(2) - ([stand] — [sign]z3% — [stand]z? — [triv]z"P~3¢ 4 2triv]z?)
2p/3<c<p
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with

1

Xs(h)(2) = a
Xs@) (p+)(2)

Hilbert polynomials:

(1)
— Xs()(2) - (1 — [stand]2? + [sign]=*),

([ftriv] + [stand](z + 2%) + [sign]2?),

p>3 T = triv T = sign
t=0,c=0 1 1
t=1
_0 1—2P 1—2P\?
€= 1—=2 1—2z
1— 3c+p 1_Zp730 2
0 3 —_—
<e<p/ ( 1—=2 > < 1—2z )
1— Z3ep\? (1 — 23P=6¢)(1 — 2P)
3 2 _
p/3<c<p/ ( T >

(1-2)

2
(1 — 28e-30)(1 — 2P) 1 23
2 2p/3 —
p/2<c<2p/ (1= 2) 12
2p/3 < ¢ < L=y 15
p c<p 1—2 1— 2
[Li14] (partial)
p>3 T = stand
t=0,c=0 2
t=1
1—27\2
=0 2
: (=)
0<c<p/3 Q — P3¢ _ 9P _ Hpt3c 4 9.2p
c
p (1—2)2
/3 e /2 9 _ z—p+3c o ZBp—?)c . Zp+3c _ Z5p—3c 4 2Z4p
c
p b (1 _ 2)2
92 Z—3c+2p _ Z3c _ Z—3c+4p _ Z3C+2p + 224p
2 2p/3
p/2 <c<2p/ 1—2)7
2p)3 < ¢ < 2 — 23¢=2p _9,p _ HAp—3c 4 9,2
c
P p (1 _ Z>2
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In all cases, the singular vectors are known explicitly and are calculated by us for ¢ in the
range p/2 < ¢ < 2p/3 and otherwise given by [Lil4]. The character formulas are not provided
by [Lil}] but they are easily calculated from the singular vectors so we include them for
completeness. When T = stand we rely on the minor technical assumption 12.2.1 for c in

the range p/6 < ¢ < p/3, and the results for c in the range p/3 < ¢ < 2p/3 are conjectural.

Proof. For all 7 and t, the case ¢ = 0 is standard; when ¢t = 0, the result is explained in
Proposition 2.6.11, while for ¢t = 1 the result follows from Proposition 2.6.13 and Corollary
7.2.6.

For 7 = triv, the remaining cases of t = 1, ¢ # 0 € [F,, fall into several cases depending
on where c lies in the set {0,1,...,p — 1}. The paper [Lil4] deals with all these intervals
except one, p/2 < ¢ < 2p/3, where they give conjectured degrees of the generators. The work
of [Lil4] can be found in Section 5.2 and we deal with the remaining case in Section 12.1.

For 7 = sign, the character formulas follow from the character formulas for triv by
Corollary 2.8.3.

For 7 = stand t = 1 and ¢ € F), the case 0 < ¢ < p/3 is done with all the proofs in
Section 12.2, the case p/3 < ¢ < p/2 is stated conjecturally and with no proofs at the end of
that section. The cases p/2 < ¢ < p follow from them using Corollary 2.8.3 and the fact that
stand ® sign = stand. O

12.1 The irreducible representation L, .(triv) characteristic

p > 3 for special c

The paper [Lil4] deals with some special values for ¢ when 7 = triv. Here we restate

Theorem 3.3 of that paper in our conventions.

Proposition 12.1.1 ([Lil4], Theorem 3.3). Consider the rational Cherednik algebra Hy .(S3,H)
over an algebraically closed field of characteristic p > 3, fort =1 and c € F,. The degrees of
the generators of the mazimal proper graded submodule of the Verma module M (triv) are

as follows:
1. 0 < ¢ < p/3: two generators of degree 3c + p,
2. p/3 < c < p/2: two generators of degree 3¢ — p,
3. 2p/3 < ¢ < p: two generators of degree 3¢ — 2p.

In all these cases the generators of this maximal graded submodule are known explicitly (see
the proof of [Li14] Theorem 3.3), the quotient of M (triv) = S(h*) by the mazimal proper
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graded submodule is a complete intersection, and the character and Hilbert polynomial of the

irreducible quotient Ly o(triv) is

XLy (eriv) (2) = Xs(p)(2) - (1 — 2%[stand] + 2*’[sign]),

_ 1— 24 2
HZlbLLc(triv)(Z) = < 1_ 2 ) »

for d the degree of the generators as listed above.

Remark 12.1.2. Note some differences from the statement here and the way this theorem
is stated in [Lil4]. The first one is that [Lil4] works with the reflection representation V' and
we work with b; the dictionary for translating results from one setting to the other is given in
Proposition 4.2.6 and we therefore list one generator fewer (the generator is o, which is 0 in
our setting). Next, there is a typo in the statement of Case (3) of [Lil4]; the correct degrees
are listed here and the proof in [Lil4] is correct. We also calculate the characters, which is
straightforward from the information provided in [Lil4]. The results of [Lil4] are missing
in one case, namely the p/2 < ¢ < 2p/3, where they conjecturally give the degrees of the
generators, and which we address in detail in this section, calculating the generators of the
maximal proper graded submodule, calculating the character of the quotient, and showing
the quotient is irreducible (thus proving their conjecture). Finally, we want to point out that
the results of [Lil4] in the cases 0 < ¢ < p/2 and 2p/3 < ¢ < p lack three steps in the proofs: a
minor step showing, in their notation, that Dy(G1) = 0 (which is completely straightforward),
the proof that the quotient is a complete intersection and thus its Hilbert polynomial is as
stated (which is explicitly assumed in their Theorem 3.3), and the proof that the quotient is
irreducible (which relies on the yet unpublished results by Roman Bezrukavnikov and Andrei
Okounkov). We do not do this here, but note that these results all appear correct and can

be verified using similar methods to our work in the case of p/2 < ¢ < 2p/3.

The aim of this section is to describe L; (triv) in the non-modular case p > 3 for those
values of special ¢ that [Lil4] does not cover, namely p/2 < ¢ < 2p/3. We fix those values of

the parameter throughout this section. The main result is the following theorem.

Theorem 12.1.3. The irreducible representation Ly .(triv) of the rational Cherednik algebra
Hi (S3,h) over an algebraically closed field of characteristicp > 3 forc € Fp, p/2 < ¢ < 2p/3,
is the quotient of the Verma module M .(triv) by the submodule generated by

V6e—3p = P = (—405’ — 270%)0717%(]

1
c—ptl

2 _ ptl 1 ) )
vy = ng—?)cag Z <c i 2 ) y (—405’)0_%_3(—27032))].
=0

27+1
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This quotient is a complete intersection, and its character and Hilbert polynomial are

XLy o(orin) (2) = Xs(or) (2) (1 — [sign] 2% — [triv]e? + [sign]o®?)

: (1 — 20¢73P) (1 — 2P)
HZlbLLc(triv) (Z) = (1 — Z)Q

Proof. First recall that Lemma 10.0.2 tells us the Casimir element {2 € H -(S3,h) acts on
an irreducible S3 subrepresentation 7 of some Verma module (or its quotient) which consists

of singular vectors by a scalar depending on 7 as follows:
Qeriv=0-1d, 2|sign = 6c-id, 2|stana = 3c-id. (12.1.4)

As a consequence, singular vectors in M .(triv) and its quotients only appear in degrees of
the form kp, 6¢+ kp and 3c+ kp for some k € Z. Furthermore, singular vectors in degrees of
the form kp form S3 subrepresentations of type triv, singular vectors in degrees of the form
6¢ 4 kp form S3 subrepresentations of type sign, and singular vectors in degrees of the form
3c + kp form S5 subrepresentations of type stand.

Second, we note that for ¢ € F, with £ < ¢ < %p we have
0<6c—3p<3c—p<p, (12.1.5)

and these are the only integers of the form kp, 3c+ kp and 6¢ + kp with k € Z in the interval
[0, p].

These two facts together now spell out a strategy for describing L; (triv): starting from
the lowest degrees and going higher, we test for singular vectors. The first fact tells us in
which degrees can the singular vectors appear, and of what isotypic component are they. This
allows us to use the basis from Theorem 7.2.2 to reduce the size of the space where we are
looking for the singular vectors, by only looking at specific isotypic components in specific
degrees. The second fact tells us in which order to look at these graded pieces. This order
is important because as soon as we take a quotient by some submodule in some degree, all
calculations in higher degrees need to be done in the quotient module and no longer in the
Verma module. This is because there could be singular vectors in the quotient of the Verma
module which do not lift to a singular vector in the Verma module (see Lemma 12.1.20).

By equations (12.1.4) and (12.1.5), the first space to consider is a sign isotypic component
in degree 6¢c — 3p. In Lemma 12.1.6 we show that

+1
V6e—3p = — (—40;3 - 270%)0_177q

is a singular vector in degree 6¢ — 3p, generating a submodule of M .(triv) isomorphic to
M, o(sign). In Lemma 12.1.7 we show there are no other singular vectors in degree 6¢ — 3p.

Next, we take the quotient M; .(triv)/ <q2€_p> and continue examining the degrees as
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dictated by equations (12.1.4) and (12.1.5). In Lemma 12.1.8 we show that there are no
singular vectors in degree 3¢ — p of the module M (triv)/ <q20_p>. In Lemma 12.1.20
we show that there is a 1-dimensional space of singular vectors in degree p of the module

M (triv)/{q**7P), in the triv isotypic component and spanned by

p+1

= p+1
_ — = 1 . .
vp =03 05 Y (C - ) (—o3)e "5 I (=2703).
=0

j 27 +1

We note that vy, is only singular in the quotient M c(triv)/ (¢**?), and is not an image of
a singular vector in M .(triv).

In Lemma 12.1.23 we show that the quotient of M; .(triv) by the submodule generated
by ve.—3p and vy, is a complete intersection and calculate its character and Hilbert polynomial.

Its Hilbert polynomial turns out to be

(1 — 26¢73)(1 — 2P)
1=22

Hilby, . (triv)(2) =

By equations (12.1.4) and (12.1.5), the next degree to consider and search for singular vec-
tors is 6¢ — 2p. However, the above Hilbert polynomial shows that the maximal degree of
M o (triv)/ (Vee—3p,vp) is 6c —3p —1+p—1 = 6¢c — 2p — 2 < 6¢ — 2p. This means the
quotient M .(triv)/ (veec—3p, vp) has no singular vectors, and is thus irreducible and equal to
Ly c(triv). O

We now proceed with the details of the above proof, listed as a sequence of lemmas. We

keep the assumptions on the parameters t, ¢, p that were listed in Theorem 12.1.3.

Lemma 12.1.6. The vector

+1
V6e—3p = — (—403’ — 27032))0_177q

s singular in M167ccf3p(triv), and generates a subrepresentation (ve.—3p) isomorphic to
M; (sign)[—6¢ + 3p].

Proof. The vector ve.—3, satisfies (12).v6.—3, = —Vg.—3p 50 by Lemma 10.0.4, it is enough to
calculate Dy, (vg.—3p) to see if it is singular. We check this directly, using computations from

Chapter 10 and the fact that ¢?*~P~! is a symmetric polynomial.
_,_1id — (12 _,_1id — (13
2¢—p—1 ( )<q)_cq20p1 ( )Q)
xr1 — X2 Tl — I3

-1 1
= Cq2c—p—1 (2 . T(_bi + 3b2_) + 2. 1(26+b,) + 209

Dy, (¢*7P) = (2¢ — p)g** 7710y, (q) — cq

1 1 1
Jrg(—bQ+ +3b%) — 209 + 6(_b2+ +3b%) — 5 2b+b_) = 0.
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This shows vg._3p is singular, so it induces a map
@ : M (sign)[—6¢c+ 3p] — M (triv).

Seen as a map S(h*) = M (sign) — M (triv) = S(h*) this map is just multiplication
by ¢?¢~P which is injective. So, Uge—3p generates a subrepresentation (ve.—s3p) of M (triv)
isomorphic to M .(sign)[—6¢ + 3p).

O

6c 3p(

Lemma 12.1.7. The only singular vectors in M’ triv) are multiples of vee—3p.

Proof. By Theorem 7.2.2, a basis for the sign isotypic component in degree 6¢ — 3p is
{080%-q | 2a+3b+3=6c—3p}.

By the results in Chapter 10, we have that

a 3 a— a
Dy, (050% - q) = <2a02 fogth b 2ol 1) (b4 —b-)
—(2a+3b+3—60)

5 o805 ((—b2 + 3b%) — 2b1b_).

Notice that in our case we have 2a + 3b + 3 = 6¢ — 3p, so this reduces to

a -3 a— a
Dy, (0505 - q) = ( 5005 "+1+3b +2 b= 1) (b —b_).

Now let us parametrise all a,b such that 2a + 3b + 3 = 6¢ — 3p. Notice that a = 3¢ for

some 0 << ¢— M in which case b = 2¢ — p — 1 — 2i. This tells us we are looking for all
singular vectors of the form

p+1
¢~

z : 3i _2c—p—1-2i
0%0-2 03 - q,

and they will be singular if and only if

1
c—Ptl

2
9 1
Z ai( 22031 1032’0 P— 21+§(2C_p_1_2) 3z+2032’c p—2i— 2> —0.
i=0

Noting that the first summand is zero for ¢ = 0, we can rewrite this sum as

_ptl
2 .
-9 1) 4 o ' o
Z (ai+1@;L)ng+2U§c p—2i— +a23(20_ 1 22')0'32—’_10'30 p—21 2> -0
=0
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and which is equivalent to

-9 +1 2 p+1 ) p+1
ai+1(2)+ai3<c—2—z>:0 OSZSC—T.
This can be further rewritten as
2° (= 2y — 1) o, ptl
ai+1:§#ai OSZSC—T,

which is a system whose unique (up to overall scaling) solution is

_pHL
(M:(—n*“?M-m*ﬂ?”~<c ,2>, ogigc—ggl.
1

This shows that the unique (up to scaling) singular vector in degree 6¢ — 3p is

1 2 C—m L 1 . o(e_p¥l_,
”6673:0:(*1)6_% Z < Z.Q )4%:231,276—?;—103(0 2 ’).q
i=0
1
= (40§ — 2703)" "2 ¢
q2cfp

Lemma 12.1.8. There are no singular vectors in degree 3¢ — p of M o(triv)/ (Vec—3p).

Proof. 1t is straightforward to show that there are no singular vectors in degree 3¢ — p of the

module M; .(triv), using a similar computation to the above and the basis

{08054 | 2a +3b+1=3c—p} U {o505(—b% +3b%) [ 2a+3b+2=3c—p}, (12.1.9)

of the Sy invariant part of the stand isotypic component of Mi‘;_p (triv). However, this

lemma claims more - that there are no singular vectors modulo ve.—3, = ¢%¢7P. The basis
(12.1.9) is not well suited to taking this quotient and the calculations are more involved, so we
first change basis to the one in which taking this quotient becomes very easy. We then prove
the lemma by direct computation. We distinguish two cases, depending on the remainder of
p modulo 3.

Case 1. p = 2 (mod 3) The new basis of the Sy invariant part of the stand isotypic

component of Mi?’ “"P(triv) we propose to use in this case is

. P+l o ) _ptl o,
{q2’0§ E 2Z-b+‘0§i§g—p—gl}U{q2@+1g§ R l.bf‘ogigf_ﬂ_l
(12.1.10)

This set is indeed a basis as it lies in the So invariant part of the stand isotypic component
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of Mi‘;_p (triv), is linearly independent and has the correct number of elements

After taking the quotient by (¢?*") the set (12.1.10) is reduced to

9¢ =22 . p+1 9i41 =P —2i-1 . p+1
{q o -b+‘0§2§c—T U q o -b_‘nggc—T—l.
(12.1.11)
This set spans the Sy invariant part of the stand isotypic component of M icc_p (triv)/ <q2€*p >
and contains 2¢ — p elements. On the other hand, the multiplicity of stand in Miccfp (triv)
2p—3c+2

is w, the multiplicity of stand in Micc_p (sign)[—6c + 3p] is ==, so the multiplicity

of stand in Mf”c(;p(triv)/ <q2c_p> is

3c—p+2_2p—3c+2
3 3

= 2¢c —p.

This shows that the set (12.1.11) is a basis of the Sy invariant part of the stand isotypic
component of Micc_p (triv)/ (¢*P).

We calculate the Dunkl operators in this basis.

D+l o 3 1 oD+l o
Dy (¢¥oy 2"b+>=<1‘c+p+>q%§ i

2
4 ;(c _ 1%1 _ 2i> q2i+10§—%—2i—1 + (_27i)q2i—10§—%ﬂ—%+1
. (_3Z->q2i—10_§_p7+1—2i0_2b+ N é(c B 1%1 B 2Z.> q2i0_§—”7“—2i_10_2b+
n (—Bi)qziflogf%l*%@b_ B ;(C B ]%1 B 22-) q2i0_§*%*2i710_2b_
(12.1.12)
Dy, (2! o=Bf=2i-1 bo) =
— %1 (c - 7%1 —2i— 1>q2i+2a§p;12i2 + g(zz‘ 1o 20)g%el T

R

] o 1 1 . _pHl o
—|—< (2i—|—1)—|—c)q21(7§ s 102b+—<c—p—§—2i—1)qzz+lag s 202b+

e ptl o 1 1 . _ptl o
g(% +1)— 3c> qQZag s lagb_ ~ 35 <c - % —2i— 1>q2’+1a§ s 2026_

(12.1.13)
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Assume that

cprH o c— p+1 1
P
9 C—rg—— 21+1 c———22 1
w= E aq*og ® b+ + E Biq b
1=0 =0

is a singular vector. Using (12.1.12) and (12.1.13), we get that the triv component of D, (w)
is 0 if and only if

P+l

‘&= ( 3C+p+1> 2% c—— 2i
aj |1 ———F— | q" 05
‘ 2
=0
,%1,
-1 1 ptl_
" Z o (C_p+ _ 9 1>q2z+2§ 2i—2
c—pT“—
9, . ptl_o
LY Al -2
=0
This can be rewritten as
o (1 _3ct+p+ 1) Qlagf%—m
, 2
=0
-1 + pil_o
+ Z 5@16<c— pT —2i+ 1>q2103 I
=1
e—BEL
9. ; c—2tl_o;
+ > Big(2i+1— 20)¢% 0y ¢ =0.
i=0
When ¢ = 0 this leads to
3 1 9
o - <1—C+2p+> + - 5(1=20) =0, (12.1.14)
while for i =1, .. c—ﬂ—lwe get
3 1 9 1 1
;- (1— C+5+> + G; - (22—}—1—20)4—6Z 1- 6<2z—1—c+p—§> =0 (12.1.15)
- +1
and finally when i = ¢ — &=,
3 1 1 2 1
021 <1 — C+2p+> + B ety 6<c — (’j) — 1> =0. (12.1.16)

Similarly, using (12.1.12) and (12.1.13), we get that the sign component of Dy, (w) is 0
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if and only if for i = 0,

1 3 1
ag - <c - p‘;) +Bo- <1 +5(e— p;)> +ay - (—27) =0, (12.1.17)
P+l

and fori=1,...,c— 5~ —1,

a - <c - ]%1 - 22') + 5 <1 + g(c - p?)) o (<27(i+1) =0,  (12.1.18)

p+1

and for i = ¢ — 5=,

a, pi - (—c+ 2(1)3—1—1)) =0. (12.1.19)

The system of equations (12.1.14)-(12.1.19) can now be shown to have no nonzero solutions
by using (12.1.19) to deduce Qo pt1 = 0, (12.1.16) to deduce Bci%fl = 0, then alternating
(12.1.15) and (12.1.18) to show that f;_; =0 and a; =0 foralli =1,...,¢c— Z%l —1 and
finally using either (12.1.14) or (12.1.17) to show that ap = 0. The only constants we divide
by in this calculation are ¢ — % —2i and ¢ — % — 2¢ + 1, which are never equal to 0 for
these i and £ < ¢ < %p. This shows that the only solution to the equation Dy, (w) = 0 in the
Sy invariant part of the stand isotypic component of Ml?”ccfp (triv)/{(¢*P) is w = 0, proving

the claim of the Lemma in Case 1.

Case 2. p = 1 (mod 3) A similar proof works. The basis of the Sy invariant part of
the stand isotypic component of Miccfp(triv)/ (q*7P) is

P 1 ) _pt2 g 1
{q%g U SILESE C_p;} U {qmﬂag s apb 0<i< c—p;_}.

We calculate the Dunkl operators in this basis to be:

p+1

i == —21
Dy, (¢% oy % (=02 4+ 30%)) =

ptl_o

2 . P2 _oi 1 . _ptl
= 2<c — % — 2i> q2’a§ S (—9i)q21_la§ 50 4

+ something in the stand component of Miccfpfl(triv)
ir1 c—EEt-2i—1
Dy, (¢* oy F T 2bibl)) =
| o~ PE22i- 2 . Cptl o
=6(2i+1— 26)(]210'; = —2i 10_% 2 ]% 9 1)q21+10_§ -2 20_5

+ something in the stand component of Micc_p_l(triv).
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Requiring that a vector

p+1 _p+l __
2 =1

_pEt2_o5; . _pt2 o
jg: agtoy F (R 3+ Y Bidtloy T T 2bib

c—

satisfies Dy, (w) = 0 leads to to a system of equations for «;, ;. By asking that the triv

component of Dy, (w) is 0 we get

2
arzG—p§—2>+ﬁra%+1—2@:Q i=0,...,c——=—1

and by asking that the sign component of D, (w) is 0 we get

p+2

1
ai+1~(—9)(i+1)+ﬁi'2(c—3—2 —1> =0, i:O,...,c—]i.

2

This system has a unique solution a; = 0, 8; = 0 for all ¢, so w = 0. This proves the Lemma
in Case 2. O

Lemma 12.1.20. There is a 1-dimensional space of singular vectors in degree p of the module

M o(triv)/ <q2€_p>, in the triv isotypic component and spanned by

C_LH

- -\ 1 3ye—EH—j 214
vy =05 o Z (—4o3) J(—2703)’.

2j+ 1

Note that v, is only singular modulo 7P, and is not an image of a singular vector in
MLC(tI‘iV).

Proof. We will be calculating modulo

2c— —etl

TP = (—4os — 2702)" 2 q.
The basis we are working with in triv isotypic component of Mic(triv) is
{0908 | 2a+3b=p, 0<a,b}.

The relations among those elements coming from taking the quotient by ¢*“~P are

a b 2c—p+1 __

0503q = 0305(—403 — 270 )Cf*ﬂ =0,

for all a, b such that 2a+3b+6(c— 5 pfl 1) = p. In particular, in this quotient we can express

any power of ag with b > 2¢ — p 4+ 1 in terms of polynomials of lower degree in 3. So, the
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basis of the triv isotypic component in degree p of the quotient M; .(triv)/ <q2cfp> is
{0968 | 2a+3b=p, 0<a, 0<b<2—p+1}.

To parametrise the set of all such a,b, note that if 2a + 3b = p, then b has to be odd, so
b=2j+4+1and a = % — 3j. The inequalities 0 < b < 2¢ — p + 1 now become 0 < j
and j < ¢ — Zil, and the inequality 0 < a becomes 0 < 1%3 — 35 which is automatically
satisfied for all j =0,1,...,c— ﬁ So, an arbitrary vector in the triv isotypic component

of Mfc(triv)/ (q**7P) can be unlquely written as

P+1

P5=—3j 2j+1
Z ;02

c—

for some «; € k (depending on c).

Let us check when such a vector is singular. We have

Dy, (050%) = — “Lo1ob by +3b-) + 357505 (=03 +302) +3-2b1b).

This formula makes it clear that there will be no singular vectors in Mp (triv), but there

still might be singular vectors in degree p of the quotient M; .(triv)/(q 20— ~P). We have:

o (- 3)
— (B2 —3j) 2=3_3: 1 o
Dy, (v) = Z O‘j<26]022 7o by + 30
j=0
27 +1 »33_3;
+ J36 oy” o ((—bL +3b2) +3 - 2byb_ ))
941 1
223 351
= Z a; ]12 0_2 J— 2] <3O‘3b++30'2( b3_+3b2_)>
j=
2j+1 23351
— Oy j12 09 7 2]( 90’3b+—0’2 2b+b )
_ptl
e 21 e 2 +1 25231 g
= Z « 0y° gb— — «; 12 0y° 3 qby
cfp';l
1 _pHL_ Gy
=150 025+ Doy " 7 o | g (b —by).
j=0

We now note that this is a multiple of

c—

+

2 p +1 , .
(=403 — 2702)°~ - Z ( ) 402)C_ﬂ_j( 27032

7=0
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if and only if (up to overall scaling) we have for all j

C—w prl_ ;
aj2i+1) = (77 )cay -y,

This proves there is (up to scalars) exactly one singular vector in the triv isotypic

component of MY (triv)/ (¢*“7P) equal to

p+1
_ 2p=3c c— 1 43\ B =i (o752
Up = 0y U;( j >2j—|—1( 03) ( 03)
O
Remark 12.1.21. We can rewrite it as
_ptl i .
= . TT=h(2m — 2j)

— ;2p—3c 3 2\c— B —4 3

vp =05 03 (—doy —2703)°" 2 '(—4do3y)' = '
iz—; [Tj—o(2m + 1 —2j)

though it is not clear if we gain anything by rewriting it like this, or if we can find a closed

formula for it.

Remark 12.1.22. When ¢ = %, it lies in this interval because ¢ = % € I, lies between p/2

and 2p/3. For ¢ = % the above formula says

p—3

— 2
'Up—o-z 03.

Compare this with the formula in [Lil4] Remark 3.5.

Lemma 12.1.23. The vectors ve.—3, and v, form a complete intersection. The character
and the Hilbert polynomial of the quotient M o(triv)/ (Vec—3p, Vp) are
XMy o (6riv) ) (v6e_spo00) (2) = Xs(57) (2) (1 — [sign] 2%~ — [triv]sP 4 [sign]z%?P)

. (1—257%)(1 - 27)
HZlel’c(triV)/<U6c—3p7UP> (Z) - (1 - 2)2 .

To prove Lemma 12.1.23 we will need two auxiliary facts, which will not be used elsewhere.

Lemma 12.1.24. For any m € N with m < p we have

> (7 )arert-vizo

J=0

Proof. Set
" /m 1 Sy
fm(2) = Z (] > m(_l)]ZQJ-Fl.

J=0
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The claim is then that f,,(1) # 0.
Differentiating formally we get that

jM@Zg%?yﬁﬁﬂ=ﬂ—fW,

fle) = [ =2z f(0) =0

is the primitive function of (1 — 2z?)™ with no constant term.

There is a recursive formula for evaluating this integral, given by

2(1 —22)m 2m _
/( )= = Yo )T

As 2(1—22)™

Sl |.=0 = 0, we have

21 =22)™ 2m
fml2) = =5 =+ gm0

and so
2m

2m +1
and in particular (using m < p and p # 2) we get f,(1) # 0 if and only if f,,—1(1) # 0.

fm(l) =0+ fm—l(l)

Inductively, it remains to show that fi(1) # 0, which is straightforward from

1
fi(z) = /1 —2dz =2 — §23
and
2
Al =5 #0.
O
Before the next lemma, recall that ¢* = —405’ - 270%. and v), is given in Lemma 12.1.20.

Lemma 12.1.25. If k € N and A, B € S(h*)% are symmetric polynomials such that
A(—403 — 2702)% = Bu,,
then there exists a symmetric polynomial C' such that
A=Cvy, B=0C(—405—2703)".

Proof. This is a statement about symmetric polynomials, which, by the the fundamental

theorem of symmetric polynomials form an algebra isomorphic to a polynomial algebra
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S(b*)% = Kk[a,b] with the isomorphism oy + a,03 — b. Abusing notation slightly, the
problem becomes about A, B € k[a, b] such that

p+1

3 2k 2p—3c = c— ”%1 1 3ye—2tl_j 2\
A(—4a” — 27b°)" = Ba*P™>°b E ) - (—4a”) 2 I (=27b%)7.
X J
7=0

25 +1

The polynomial —4a® — 27b% is irreducible. It does not divide the polynomial vp =
_ptl +1 . .
a?P=3h 25202 (ijT)Til(—4a3)c_p7+l_](—27b2)]; to see that, plug in the values a = —3

and b= 2 to get that —4(—3)3 — 27 - 22 = 0, while by Lemma 12.1.24

p+1

2p—3 p+1 ‘= C_M 1 .
g = (35 22 S (C7 T ) 1 o
7=0

So, (—4a? — 27b%) divides B, and proceeding inductively we get that (—4a3 — 27b%)F divides
B. This means there exists C' € K[a, b] such that

B = (—4a® — 270*)kC.

It now follows that

C_pTH p+1 1
C— ~—&— ptl _ i
A=C-a® % < 2 ) ——(—4a®)" "z I (—276%)7.
> (7)) e s
7=0
Returning to the setup with o9, o3 instead of a,b we get the claim. O

Proof of Lemma 12.1.23. The claim that ve.—3, and v, form a complete intersection follows
from the claim that they belong to a regular sequence in the regular local ring S(h*). A
regular sequence is a sequence such that each element of the sequence is a non-zero-divisor in
the quotient by the ideal generated by all previous elements of the sequence. We claim that
in S(h*) = M .(triv) we have

(V6e—3p) N (Vp) = (V6c—3pUp)

thus showing that they form a regular sequence.

Consider any vector u € (vg.—3p) N (vp). As we are in the non-modular case, by using S3
projection formulas we can assume that w« is in an isotypic component of type triv, sign, or
stand. It is of the form

u = Avge—3p = By,
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for some A, B € S(h*). Recall that

_ _ptl
Voe—sp = ¢2CP = (—4os — 2703)° 2 ¢,
that ve.—3p is in the sign isotypic component and that v, is in the triv isotypic component.

Case 1. If the vector u is in the sign isotypic component then A is symmetric and B
is antisymmetric. Write B = B’ - ¢ for some symmetric polynomial B’. The problem now
becomes finding A, B’ € S(h*)** such that

pt1

A(—4os — 2703)°" 2 = By,

Using Lemma 12.1.25 we get that there exists a symmetric polynomial C' such that

A= Cuy, B = C(—408 — 2762)" "5, B = C(~40% — 2702)° "5 ¢ = Cg®P
and so the vector u = Cvge—3pvp lies in (vge—3pvp) as claimed.

Case 2. If the vector v is in the triv isotypic component then A is antisymmetric and
B is symmetric. Write A = A’ - ¢ for some symmetric polynomial A’, reducing the problem
to
A (—403 — 27(7?2))‘3_%1'H = Bu,

with A’ B € S(h*)%. Using Lemma 12.1.25 again we get that there exists a symmetric
polynomial C' such that

p+1

A= Cuy, A= Cuypq, B=C(—403 —2702) 5 T = Cg> P+,

and that so the vector u = Cvge—3pvpq lies in (ve.—3,vp) as claimed.

Case 3. If the vector « is in the stand isotypic component, we can assume without loss
of generality that it is Sy invariant. Then A lies in the S antiinvariant part of the stand
isotypic component of S(h*), B in the Sy invariant, and using the basis from Theorem 7.2.2

we can write

A= Aib_+ Ay-2b b, B = Bib; + Ba(—b% +3b%)

for some Ay, Ay, By, Bo € S(h*)%. The equation Ag**™P = Bu, becomes
(A1b_q + Ay - 2byb_q)(—do3 — 2702)" "% = (Byby + Ba(—b2 + 3b2))v,

or, using the results from Chapter 10,

pt1

1
<A1 . 30‘3b+ + A - 502(_1)3— + 3b2_) + Ag - 4U%b+ — Ay - 30’3(—(73_ + 3()3)) (—40‘;’—270‘%)6_T =
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Rewriting further we get the system

(Ay - 303 + Ay - 402) (—408 — 2703)°"F = By,

1
<A1 1302~ Ag - 303) (403 — 270%)6_% = Bauvp,

which is again a problem about symmetric polynomials. We use Lemma 12.1.25 twice to get

that there exist symmetric polynomials C1, Cy such that

p+1

A1 . 30’3 + A2 . 40% = Cl’Up, B1 = Cl(—40'§q’ — 270§)C_T

pt1

1

From here we get

Ay - (—403 — 2703) = (=3)(Cy - 303 + Cy - 403)v,

1
Ay - (—403 — 2703) = (—=3)(Cy - §a§’ + Cy - 303)vp,.

We now use Lemma 12.1.25 twice more to get that there exist symmetric polynomials Dy, Ds
such that
A1 == Dlvp, A2 == DQUp.

Finally, it follows that the vector u A¢?*~P = Bu can be written as
u = AUpcfgp = (lef + Do - 2b+b7)’0p073p’0p,

which proves it in (vpe—3pvp) as claimed.
The computation of the character and the Hilbert series is now standard, using that
Ly c(triv) is a quotient of M (triv) by the sum of the submodule generated by vge—3p
isomorphic to M .(sign)[—6¢ + 3p] and the submodule generated by v, isomorphic to
M o(triv)[—p], whose intersection is the submodule generated by ve.—3pv, isomorphic to
M, o(sign)[—6¢ + 2p].
O

12.2 The irreducible representation L, .(stand) characteristic
p > 3 for special ¢

The aim of this section is to prove Theorem 12.2.2 which describes L; .(stand) for p > 3,

c € F, with 0 < ¢ < p/3. The proof of Theorem 12.2.2 relies on Lemma 12.2.17. We were

unable to prove this lemma without a technical assumption on the parameter c. However,

we believe the assumption is satisfied for all ¢ € F), with 0 < ¢ < p/3.
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Throughout this section we will use z to denote to the falling factorial power

t=zxz—-1)(z—-2)---(x—n+1)

n factors

with the conventional empty product z2 = 1.

Assumption 12.2.1. Let p > 3 and c € F), with 0 < ¢ < p/3. Assume that c satisfies one of
the following:

1. Either 0 < ¢ < p/6;

2. Orp=1 (mod 3), p/6 < c < p/3, and

ezl g . —
B SRR TRV
prt 3k kl(c —2)2k ’

3. Orp=2 (mod 3), c= prl.

4. Orp=2 (mod 3), (p+1)/6 <c<p/3, and

L2 . —
S 1 B -2 o

3k—1 k!(c— 1)2k+2

£0.

We have checked this assumption in [Magmal] for all p < 2022. We rely on this assumption
in the proof of Lemma 12.2.17.

Theorem 12.2.2. The irreducible representation Li.(stand) of the rational Cherednik
algebra Hy o(S3,h) over an algebraically closed field of characteristic p > 3 forc € F,, 0 < ¢ <
p/3, is the quotient of the Verma module M .(stand) by a submodule (vp_3¢, v+, V—, Upy3e),
with the singular vectors vp_3c,v4,v— and vpy3. found in Lemma 12.2.6, Corollary 11.2.8

and Lemma 12.2.37. Its character and Hilbert polynomial are

XLl,c(stand)(Z) = XS(h*)(Z) - ([stand] — [triv]zpfgc — [stand]zP — [sign]szch + 2[sign]22p)

. 92 _ Zp—3c — 9P _ Zp+30 T 222;)
HZlbLl,c(stand)(Z) = (1 — 2)2 .

Proof. The vectors vp_3c, v4,v— and vp43. are shown to be singular in Lemma 12.2.6, Corol-
lary 11.2.8 and Lemma 12.2.37. Once we have these vectors, the aim is to calculate the
Hilbert polynomials of L; .(stand) and M; .(stand)/ (vp—3c, U4, V—, Upt3c) and show they are
both equal to Q_Zp73c_(2fi;)§p+36+2z2p
To calculate these Hilbert polynomials, we proceed as follows. Any proper graded sub-

. The claim of the Theorem will then follow immediately.

module of M; .(stand) is generated by singular vectors belonging to some irreducible subrep-

resentation of S3. Therefore each proper graded submodule of M; (stand) is, up to grading
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shift, M .(stand), M (triv), M (sign), or some proper quotient of one of these Verma
modules. Note that any proper quotient of a Verma module must itself be the quotient by a
Verma module or a proper quotient of a Verma module, up to grading shift. The irreducible
module L; .(stand) is the quotient of the Verma module M .(stand) by a collection of proper
graded submodules, therefore the Hilbert polynomial of L; .(stand) is a linear combination
of the Hilbert series of M .(stand), M (triv), M (sign), or their proper quotients, up to
grading shift. Since we know that L; .(stand) is finite-dimensional, and that we can start this
process with the finite-dimensional baby Verma module N .(stand), it follows that this pro-
cess ends in finitely many steps and results in a Hilbert polynomial has finitely many nonzero
terms. Lemma 12.2.5 tells us that the module M .(stand) is an extension of the modules
Ly c(stand)[—kp] with k > 0, Ly .(triv)[—kp + 3¢| with k¥ > 1 and L .(sign)[—kp — 3]
with k£ > 0. Consequently the Hilbert series of any quotient of M .(stand) will be a linear

2zkp Z
1-2)27 (1—2

combination, with integer coefficients, of terms of the form 0

First, consider the degrees 0,1,...,p — 1 of L; .(stand). If there are no singular vectors
in degrees 0,1,...,p — 1 of M .(stand) then the Verma module and its irreducible quotient
are identical in degrees 0,1,...p — 1. Lemma 12.2.5 tells us that the only degrees among
0,1,...,p — 1 where M .(stand) can have singular vectors and thus differ from L; .(stand)
are p — 3c and 3c. Lemmas 12.2.6 and 12.2.17 look for those singular vectors, finding one in
degree p — 3c and none in degree 3¢, and let us conclude that

. 1 3¢
Hilby, _(ssana)(2) = ( (2= 2%+ 0(2P))

1—2)2

where O(zP) denotes any sum of terms with degrees greater than or equal to p.

This in turn lets us conclude that up to degree p — 1, any quotient of M; .(stand) either

looks exactly like M .(stand) with no singular vectors in degrees 0,1,...,p— 1 removed and
the Hilbert series ﬁ, or looks like Ly .(stand) with the Hilbert series %

Next, we turn our attention to M (stand)/ (vp—3¢, V4, V—, Vpy3e). Lemma 12.2.38 shows

that the quotient M; .(stand)/ (vp—3c, Up+3c) has Hilbert series

1

Hﬂle7c(stand)/(vp_3c,vp+3c>(z) = W(Q — ZP*?)C . 2P+3c).

Lemma 12.2.40 then shows that v, and v_ are not zero in the quotient M .(stand)/
(Up—3¢; Up+3e). Thus, they generate a module (v4,v_) in degree p, which is a quotient

of M .(stand), and so, by the previous paragraph, up to degree 2p — 1 looks either like

M, o(stand)[—p] with the Hilbert series 2212%0'2()222?) or like L .(stand)[—p] with the Hilbert

22P_22p—3¢ L O(;2P)
(1-2)2
looks like in degrees up to 2p — 1, we notice it is the image of the map

series To see what the submodule (vy,v_) of M (stand)/ (vp—3cp+3c)

¢+ M o(stand)[~p] > My c(stand)/ (v-se, vp-3c)
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defined by ¢(b+) = v+. In Lemma 12.2.41 we show ¢(v,—3.) # 0, which lets us conclude that
(v4,v_) has the Hilbert series 221’(;705517) and that M .(stand)/ (vp—3c, U4, V—, Upt3c) has the

Hilbert series

. 1 _
Hllel,e(Stand)/<'l)p—3c7v+,'Uf,’l)p+3c> (z) = 4(1 — 2)2 (2 _ P 3 _ 9. 2P _ zp+30 + 0(22p>) )

(12.2.3)
Noting that degree 2p — 1 of that expression is 0 (see Lemma 12.2.42), we conclude that

M (stand)/ (vp—3¢, V4, V—, Upt3e)

is finite-dimensional, concentrated in degrees up to 2p — 2, with the Hilbert series

. 1 .
Hilbar, (stan)/(op e o prach(2) = 73z (22" 56— 2. 2P — PO 4 2,%)

(The last statement is clear because both are polynomials of degree 2p — 2, whose coefficients
match up to degree 2p — 1).

We now return to Lj.(stand). It is a quotient of M .(stand)/ (vp—3c, V4+V—, Upy3e) by
some submodule. This submodule is concentrated in degrees p and above by Lemmas 12.2.5,
12.2.6 and 12.2.17. Let M be the number of irreducible composition factors of this submod-
ule of type L; .(stand)[—p], let N be the number of irreducible composition factors of this
submodule of type Lj (triv)[—2p + 3¢| and let K be the number of irreducible composi-
tion factors of this submodule of type Li.(sign)[—p — 3c¢]. We have M, K, N > 0. In the

Grothendieck group we can write

[L1,c(stand)] = [M; o(stand)/ (vp—3c, V4, V—, Upt3e) | —

— M - [Ly (stand)[—p]] — K - [L1(sign)[—p — 3¢]] = N - [L1 c(triv)[—2p + 3¢]].

In terms of Hilbert polynomials, using the previously calculated Hilbert polynomials of

M, c(stand)/ (vp—3c, U4, V—, Vpt3c), L1c(triv) and Ly .(sign), we have

HﬂbLl,c(stand) (Z) - HﬂbMLc(stand)/(vp,gc,v_,_,v_,vp+gc) (Z) - M- 2" HﬂbLl,c(stand) (Z)_
— K - 2P - Hilby, (sign)(2) — N - 2% *Hilby, (sriv)(2).  (12.2.4)

From here, Lemma 12.2.43 lets us conclude that M = K = N = 0. This implies that
Ly c(stand) = M (stand)/ (Vp—3¢, V4, U—, Upy3c)
and its Hilbert polynomial is as claimed. O

We will now state and prove all the lemmas used in the above proof.

Recall Lemma 10.0.2, which says that the action (2|, of the Casimir element on any
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irreducible representation 7 consisting of singular vectors is by the scalars
Q’triv = 0; Q’sign - 607 Q’stand = Jc.

This limits the degrees in which singular vectors can occur, because if 7 is an irreducible
representation consisting of singular vectors inside Mfc(o) or its quotients, then 2|, =
2|, + k € Fp,. Thus, to describe all degrees k for which singular vectors of type 7 can occur
in Mfc(stand) or its quotients, we need to describe all k& € N of the form k = 2|; — 2|stana-
Their relative order is also important, as we look for singular vectors in order from smaller
degrees to bigger, taking quotients each time and subsequently looking for singular vectors in

the quotient. Putting that information together for 0 < ¢ < p/3, we get the following lemma.

Lemma 12.2.5. If 7 is a an irreducible representation consisting of singular vectors inside

Mfc(stand) or its quotient, then the pairs (k,T) are of the form:
1. Force {0,1,...p— 1} with0 < c < p/6:

3¢ < p—3c < P < 3Jc+p < 2p—-3c <

T sign triv stand sign triv

2. Force{0,1,...p—1} with p/6 < c < p/3:

k: p—3c < 3¢ < P < 2p—3c < 3c+p <

T triv sign stand triv sign

We will first examine the triv and sign isotypic components in degrees p — 3¢ and 3c.
The order matters, because some vectors in higher degrees might turn out to only be singular
modulo lower degrees. It will turn out that there is a singular vector in this triv but not in

this sign isotypic component.

Lemma 12.2.6. There is a 1-dimensional space of singular vectors in degree p — 3c of the
module M (stand), in the triv isotypic component, spanned by the v,_3., given by the

following formulas:
1. If p = 1 (mod 3),

L%(pT_lfc)J (_1)i (E — C)ﬁ . p=1 2
> T H:E G 2)03203 3 (by @by +3b_®@b_)
i=0 Cllj=10d

[3(P5t —e=1)] (—1)it1 (25t — )2l

Up—3c =

3i41 gt —e—2i—1 2 2
+ — - . ' oy oy . ((—b+ +3b2) ® by
2 6-9" 4TI (35 - 2)

=0

43 (2b4b_) ®b_>;
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2. If p = 2 (mod 3),

Up—3c

B Cay o - o

= K 7 2 3
% mgm-
[3(552—0)] i (p=2 2i
—1)¢ p—a . =2 . 9
S (=1 (5 —o* o3oy® (<2 4302 ) @by +3-

pr 9 (35 — 1)

3i42 pT_2—C—2i—l
g g '(b+®b++3b7®bf)

(2b4b_) ®b_).

Proof. According to Theorem 7.2.4, a basis for the triv isotypic component of M: ﬁ;?’c(stand)

is

oS08 (by @by +3b_®b_), 2a+3b=p—3c—1

o5 (=03 +362) @by +3-(2b4b-)®b-), 2a+3b=p—3c—2

We calculate the action of the Dunkl operator Dy, on such vectors of total degree p — 3c,

using the auxiliary computations from Chapter 10, to be:

Dy, (0505 - (by @by +3b-®b_)) =

_3c

_l’_

_l’_

_l’_

+1

5 o808 @ (by +3b_)

b
60;+1 b—1 (b+®b+—3b ®by —3byp @b — 3b_ ®b)

%ag—lag (=02 +302) @by —3(2b b ) @by — 3(—b2 +3b2) @ b_
b o
50‘210(:; g @ (by —bo);

Dy, (0505 - (b3 +3b%) @ by + 3 - (2by b )®b ) =
= —9a05 1ot @ (by +3b_) + 2605205 @ (by +3b)

+

+

a0203 (b+®b+—3b ®b+—3b+®b_—3b_®b)

—b
s — o5t (=02 + 3b%) @ by — 3(2b4b_) ® by — 3(—bL +30%) @ b_

+3a0y tolq @ (by —b).

(12.2.7)

—3(2b4b_) ®b_)

(12.2.8)

— 3(2b4b_) @ b_)

We now distinguish the cases p = 1 (mod 3) and p = 2 (mod 3), in order to parametrize

the integral solutions to 2a + 3b = p — 3c — 1 and 2a + 3b = p — 3¢ — 2 differently.

1. Assume p = 1 (mod 3). Any vector in the triv isotypic component of Mf;?)c(stand)
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L3 (25t 1) - ,
+ Y modleyT T (< 4302 ) @by + 3 (2b4b-) ©b).
=0
We use equations (12.2.7) and (12.2.8) to express the condition Dy, (vp—3.) = 0 in terms

of equations for the coefficients \;, u;.

First of all, reading off the coefficient of ¢ ® (b4 — b_) we get that for all ¢

1 p—-1
i - 5(% —c—2) + i - 3(3i+1) = 0. (12.2.9)
The same condition gives that the coefficient of (b ®by —3b_®by —3b; @b_—3b_®b_)

in Dy, (vp—3¢) is 0.

Reading off the coefficient of (—b% + 3b%) ® by — 3(2b4b_) @ by — 3(—b2 4+ 3b%) @ b_ —
3(2b4b_) ® b_ we get that

3B —al . [3(B5t—c—1)] -1 :
3 . Pl o —(Er —c—-21—-1 - Pl o 9
i=0 1=0
which can be rewritten as
|32t —0)]-1 .
3 1) . p=l_ . _o9;_
Z )\Prl (2+ >O'Sz+20'33 c—21—2
; 12
=0
|3 (25 —c-1)] p—1 )
—(==—c—21—-1) . el 929
D S B L
i=0
and leads to the condition that for all ¢
3(i+1 —(Bt —c—2i-1
Am(g) w3 - ) _o (12.2.10)

Finally, reading off the coefficient of ®(bs + 3b_) we get

L3 (25 =) L3 (25t —c—1)]

3ct1 4 Pl o o o
SN el T Y w(-9)@i+ oo,
i=0 =0

1 = v
+ Y ,ui-2<p3—c—2i—1><7§”+3033 ETE 0.
=0

This can be rewritten as
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13 (252 —0)) 3 (252 —e-1))
3 1 5, 2l 9 ;1
> adieyT Tt 1i(~9)(3i + L)oo,
1=0 1=0
[3(B5 —e=1)J+1

p—1 Pl 2
+ Z i1 - 2 T_C_2Z+1 0203 =0
i=1

—c—21

and leads to

3c+1

)\i2

—1
+m(—9)(3i+1)+ml-2<pg —c—2i—|—1> =0. (12.2.11)

The system (12.2.9), (12.2.10) and (12.2.11) can be solved as follows. We first rewrite

(12.2.9) as
L = (%_C_Qi) i
‘ 6(3i + 1) v
and then (12.2.10) as
s (B —c—2i) (55t 2 —1)
o 9(3i +1)(i+ 1) '

Choosing Ao = 1 (this is the overall scalar choice) and noting that i +1 # 0,3i+ 1 # 0

for 0 <i< Lf(— —¢)], we get that a solution to (12.2.9) and (12.2.10) is given by
24 —
A = CDILE (55 —e+ 1) (12.2.12)
9 I3 —2)[Tj=1
b= U 5 (P —ct+1-4)

6-9° HZH (37 —2) Hj:l J

We note that any solution to (12.2.9) and (12.2.10) will also satisfy (12.2.11), as

3¢+ 1 —1
PPt +m(—9)(3i+1)+m_1.2<p3—c—2z‘+1>:
3c+1 ) —(E—c—%)
= A 9Bi+1). —2 - Ai
y B — s
(—0—21+1> o Ai

Ai -1 .
:2<(3c+1)+3-<pg—c—2z)-+2-32> = 0.

2. Assume p = 2 (mod 3). Any vector in the triv isotypic component of Mf;?’c(stand)
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is of the form

ey,
Up—3c = Z Xioy oy T by @by +3b_ @b+
=0
Beg-or o,
+ > modog® T (<] 4+ 30%) @by +3- (2040 ) @b ).
=0

Using equations (12.2.7) and (12.2.8), the condition Dy, (v,—3.) = 0 leads to equations

1(p-2
PV L S S A ) (12.2.14)
2 3
3c+1 _9
A - C; gt 27( 1) 4 2(1’3 —e— 2i> —0, (12.2.15)

which have a unique (up to overall scaling) solution

(_l)i 2(pg1 )2i+1

A= AT (3= 1) (12.2.16)
P o L G e
L9 LB - 1)

L]

Lemma 12.2.17. Suppose that Assumption 12.2.1 holds. There are no singular vectors in

degree 3¢ of the module M (stand)/ (vp—3.), where vp_3. is the vector from Lemma 12.2.6.
Proof. We distinguish the cases 0 < ¢ < p/6 and p/6 < ¢ < p/3.

1. By Lemma 12.2.5, if 0 < ¢ < p/6 then 3¢ < p — 3¢ so degree 3¢ of the module
M o(stand)/ (vp—3c) is equal to degree 3c of the module M; .(stand), and it is enough
to show there are no singular vectors in the sign component of Micc(stand). This is
the easier case as we are not working modulo v,_3.. By Theorem 7.2.4, any vector in

the sign component of Micc(stand) can be uniquely expressed as

L5 (c=1))
Z vio 31—0—1 0§~ 1- 22.(b+®b,—b,®b+)

E <c 2)]
+ Z s 208722 (<02 +3b2) @b — (2b3by) @by ) .
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We calculate that

Dy, (0303 (by ®b_ —b_®by)) = (12.2.18)
P YR
+% o8 gt (b @by +b_ @by +by @b —3b_ b))
1“2 SRl (( b2 +36%) @by + (2b,0_) @by

38 ©b —3(2b,0) 3 )

b
+5 o805 q® (3b- —by),

Dy, (0505 - ((=b2 +3b2) @b_ — (2b4by) ®b_)) = (12.2.19)
= —9a 05 'ob @ (b- —by) + 2b0520b @ (b —by)

+a- 0'20'3 (b+®b++b ®b++b+®b7—3b7®b7))

"6 co§Tob! <(—bi +3b2) ® by + (2b4b-) @ by

+(=b7 +3b%) @b — 3(2b1b_) ® b—)>

+a-oy tolq® (3b- —by).

From here, D,, (v) = 0 gives the system

1-—3c ) .
5 'Vi—9(3l+2)-§i+2(c—22)'§i_1:0
—1-23
i+ Bi+2)6=0
Ji+1 ‘ c—21
12 Vi — 52 1=

the only solution to which is v; = 0,&; = 0 for all 4, so v = 0. The first equation follows
from the second and third, so nothing new is gained. The thing to notice is that in the
second and third equation all coefficients are never 0, except ¢ — 1 — 2¢ when c is the
biggest possible ¢ = % and ¢ odd. Considering ¢ = 0 in the third equation, we can
conclude vy = 0, then inductively use the second equation to conclude that if v; = 0
then & = 0, and the third equation again to conclude that if & = 0 then v;11 = 0 as

well, so all v; = 0,&; = 0 for all 4.

. If p/6 < ¢ < p/3, the task is harder because 3¢ > p — 3¢ so degree 3¢ of the module

M, o(stand)/ (vp—3c) is not equal to degree 3c of the module M .(stand), and we have
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to work modulo v,_3.. We again distinguish two cases.

(a) Ifp = 1 (mod 3), an arbitrary vector in the sign component of Mf”cc(stand)/ (vp—3c)

can be uniquely written as

c—1
2

v = Z vio 3l+1 c 1-2¢ (b+®b7—b,®b+)

T*LC;J*Z
+ ) &Goy e (<R 430 ) @b — (2biby) ® D).
1=0

Note the different boundaries of summation, reflecting the fact that in the quotient
M, .(stand)/ (vp—3.) the multiplicity of sign in degree 3c is pc%l, and the terms

in the above summation form a basis.

Such a vector v is singular in the quotient Mf”cc(stand) / (vp—3c) if and only if

Dyl (U) € <vp*36> )

meaning that there exist m;, p; € k such that

_p—1_
7%

2221 1-2j
Dy, (v) = Z mio oy T0p_3e(=by +D_)
=0
=21

6 _
+ > piodta, 2B TR (— (0% 4 312) + (2b5DL)).
7=0

Expanding this out using the explicit form for v,_3. from Lemma 12.2.6 and equa-
tions (12.2.18) and (12.2.19) we get that this condition is equivalent to the foll-

lowing system of equations being satisfied for all k:

1—-3c
Vi~ +& - (=9)Bk +2) + &1 - 2(c — 2k) =
k
=D 6N + 54T i+ 54pj Mo + T2tk (12.2.20)
j=0
c—1-2k k
v T4 Bk+2)= > —6mjpu—j — 6pjhi—j + 108pjpp—; (12:2.21)
7=0
3k + 1 42k -1
Ty TS T T ; 5 MM T Opjttk—j1 (12.2.22)

187



Chapter 12. Irreducible Representations of Hy .(Ss,h) in Characteristic p > 3 for Special ¢

k
c—1-2k
§=0
where
-1 7 p—1 _ \2i
PO DL G k) (12.2.24)

9 il T (35 - 2)
(_1)i+1 (E _ C)Qii1
M = 6-9 4 32'4_1 .
(4 Hj=1(33 —2)

as in Lemma 12.2.6.

Subtracting equations (12.2.21) and (12.2.23) we get that for all &
k
> pi(—=12X; + 10814 _;) =0,
7=0

which, using Equations (12.2.25) to check that —12A,_; + 108u;—; # 0 implies
that p; = 0 for all j.

The system (12.2.20)-(12.2.23) is now equivalent to asking that for all k&

—1-2k
3k + 1 —c + 2l<: 1
v, - + &1 = g TjNh—j- (12.2.26)

We split into two further cases.

i. Assume c is even. The relevance of this assumption is in the range of k
for which the unknowns vy, &, 7, and the parameters A, ux are potentially
nonzero. Namely, we are looking for all solutions to (12.2.25)-(12.2.26) where:

” 0§k<§_1

p—1 ¢

<k ———-—-1
Sk Ok =3
-1

szogk:gc—pT—l
p—1 ¢

A 0<k<————-1
e U=R=T 0
p—1 ¢

c0<k< ——— —1.
Pe: B=F="76" "%
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Let us prove by downwards induction on m that

z/p;l_Eer:O T, =0 forall m > 0.

6 2

It is certainly true for large m (by convention). Assume it is true for m +
1,m+2,..., and let us prove it for m. Equation (12.2.25) for k = % —5+m

reads vp-1 = 0, and equation (12.2.26) for k = p% — § + m implies
6

s4m
T = 0.

The system (12.2.25)-(12.2.26) is thus reduced to

—1-2k
3k + 1 —c+2k 1
, P 12.2.28
vy, B + &kt G 5 0k ( )

We multiply (12.2.27) by aj and (12.2.28) by by, for

(—DFL 3k +1)! . (3K)!
ag = s k=D T e
2 kl(c—1)%£L El(c —1)%k
and sum over all k£ to get,
p—1l_c_ 4 p—1_c
6 2 6 2 1
0 =g Z (—6)prar + Z = A\kbi
k=0 k=0
p=l_c_ g _
. ( R IV G R VG et
— 70 k —1)2k+1L
— 2-3 El(c — 1)=E+2
p=l_c _
N 622 1135 — (B — o)
— 2 3k kl(c—1)2k
p=1l_c
e e - s o
=7 c—1 Pt 3k kl(c—2)2k

¢ -1 _1

As%#Oforcelﬁ‘p,p/6<c<p/3,andas

p—1
6

< k . _
? iHj:l(SJ - 1)(10371 —c)%k
2

3k kl(c —2)2k 70

k=0

by Assumption 12.2.1, we conclude that w9 = 0. From here we proceed like in
part (1) to deduce that v, =0, & = 0 for all k, and v = 0.

ii. Assume c is odd. In this case we are looking for all solutions to (12.2.25)-
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(12.2.26) with the boundaries:

v : ogkgcgl
p—1 c¢—1
P 0<k<L<—— -2
Sk Osks ™y 2
-1
7rk:0§k§c—pT—1
p—1 c¢—1
Ak <k<L—— 1
ke Oshs™g 2
p—1 c¢—1
: <k<——— — 1.
e Os ks =% 2

As before, we prove by downwards induction on m that

Vp—1_ =0 m,=0 forall m>0.

—1
¢ — 3 —ltm

Assuming this holds for m+1,m+2, ..., we write equations (12.2.25)-(12.2.26)
for k = Q — % —14m to get a system of two equations with two unknowns

Vp—1 = 07

-1
F-t5totem
T = 0.

and 7y, = 0, the only solution of which is vp—1 1, m
6 2
The remaining system is identical to the system (12.2.27)-(12.2.28), and we

proceed as in case (i).

(b) If p = 2 (mod 3), similar. An arbitrary vector in the sign component of M3¢(stand)/

(vp—3¢) (which has dimension p%) can be uniquely written as

c—1

v= Z vios oS (by @ b — b @ by)

P+1 I.C IJ 2

+ Y &Pt (<02 4 302) @b — (2biby) @ b)),
=0

Such a vector is singular in M (stand)/ (v,—3c) if and only if there exist 7, p; € k

such that
67%,1
+1
o 3j+1 2c—E=—2j-1
Dy, (v) = Z Tj02" O3 Up—3c(—by +b-)
§=0
P+l

Cc—
6 pt1

267772 27
+ Z pioy o T 3o(—(—b2 4+ 362) + (2b4b_)).

This is equivalent to the following system being satisfied for all k:

1-—3c
2

Vi - +&-(—9)Bk+2) + &1 -2(c—2k) =
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=3 —6mMe—jo1 + 54T + 54piAe—j_1 + T2pim—j—1  (12.2.29)

j=0
c—1-2k
Vg - — +& - (Bk+2) = Z —67jug—j — 6pjAk—j—1 + 108p;jup—;
7=0
(12.2.30)
3k+1 —c+ 2k 1
Ve T Skt 6 Z §7rjAk—j—1 + 6pjpik—j—1 (12.2.31)
c—1-2k
Vi & Bh+2) =Y 6 +6p A1, (12.2.32)
7=0

where \;, p; are as in Lemma 12.2.6.

Again, comparing equations (12.2.30) and (12.2.34) lets us show that that p; =0
for all j. Removing equations which are duplicated or linear combinations of other

equations we get:

—1-2k
Vg - % +E - BR+2) =6 mu (12.2.33)
j=0
3k+1 42k 14
Vi - fk 1 6 5277']')\]@_]‘_1. (12234)
7=0

As before, we show by downwards induction on m that for all m > 0 we have

Tm = 0 and Vptl e g, = 0 (if ¢ even) or Vptl et gy, = 0 (if ¢ odd).
This leaves us with the system
—1-2k
Vi CT + & (3k +2) = —6moun (12.2.35)
3k + 1 —c+2k 1
Vi * fk 1 6 §7T0)\k_1. (12236)

When ¢ = 3%1, some of the coefficients in this system are 0, so we can not do tele-
scoping like in the case p = 1 (mod 3). Instead, we notice that certain equations

immediately give us mg = 0:
i. If ¢ is odd, equation (12.2.35) for k = p—2 implies
vp-0+0-(3k 4+ 2) = —6moug,
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which, using pp-s # 0, gives my = 0.
12
ii. If ¢ is even, equation (12.2.36) for k = % + 1 implies

1
0+ &p-u1 - 0= smoApu1,
2 2 2

which, using Ap-11 # 0, gives mg = 0.
12

If ¢ # %, we use telescoping to get

l1)7727(2 . —
ST e -2 o

0=mo- E : 1 =
- 1 1\2k+2
— 3 El(c —1)=ft=

Assumption 12.2.1 now implies my = 0.
So, in all cases myp = 0, and we proceed like in part (1) to deduce that v, = 0,

&k =0 for all k, and v = 0.

Next, we search the degree p + 3c of M .(stand) for singular vectors of type sign.

Lemma 12.2.37. There is a 1-dimensional space of singular vectors in degree p + 3¢ of the

module M .(stand), in the sign isotypic component, spanned by vpy3., which is given by the

following formulas:

1. If p = 1 (mod 3),

125 +o)) _ .
o 2 i c (=1)° (% +c)% UgiJ?Jrc—%
=0 9 il 15135 — 2)
|22 4e-1)] , 1 o;
1 i+1 p—2 i+1 . p=1, 5.
Z ( ) — - ( 3i+‘|1‘ C). US’Z—HJ?)B 4c—2i—1 . ((_b?i- +3b2_) ® b+
697 i TEE (37 2

(b @b —b_®by)

+
=0

43 (2byb) ®b>;

2. If p = 2 (mod 3),

|5 (252 +e—1)] (—1)F 2(2 4 ¢)2itl 20 o1
3 3142 T3 TC—l—
Up+3c = P ; - 05 O3 . (b+ Rb_ —b_® b+)—i—
iz—g 9 AT - 1)
1252 +0)] p—2 2
(1) (B +o* 5 m2ica ) )
+ : . o5'o (=05 +3b7)Q@b_ — (2b4.b_) R b)) .

Proof. The proof, very similar to the proofs of Lemmas 12.2.6 and 12.2.17, is a direct com-
putation using formulas (12.2.18) and (12.2.19), showing that Dy, (vp43.) = 0. O

192



Chapter 12. Irreducible Representations of Hy .(Ss,h) in Characteristic p > 3 for Special ¢

After this, as outlined in the proof of Theorem 12.2.2, we proceed to calculate the Hilbert

polynomial of the quotient of M; .(stand) by vp—3c, V4, V—, Upt3ec.

Lemma 12.2.38. The Hilbert polynomial of the quotient M; .(stand)/ <vp,3c,vp+3c> equals

Hilel,c(Stand)/(vpfsc,vp+3c> = (1 — 2)2 (2 — zp*3c B Zp+30).

Proof. The vector vy_3. generates a submodule isomorphic to Mj .(triv)[—p+3¢], the vector
Up+3c generates a submodule isomorphic to M .(sign)[—p — 3¢, so we only need to calculate
the Hilbert series of the module (v,_3c) N (vp—3c). Write

Up—3c:f®b++g®b—
Up+3c:h®b++k®b_

with f,g,h,k € S(b*). A vector is in (vp_3.) N (vp—3c) if and only if it can be written as
Avp_3. = Bupy3. for some A, B € S(h*). This leads to the system

Af —Bh =0 (12.2.39)
Ag — Bk =0,

and to see if this has any nontrivial solutions, we will calculate its determinant fk — gh.

First, the facts that v,_3. is S3 invariant and that v,43. is S3 anti-invariant lead to

(12).f = f, (12).9 = —g, (12).h = —h, (12).k =k
- h—k —3h—k
(23).f = f2+9, (23).9 = Sf;g, (28)h ===, (23)k= 3T
_—f-y _ —3f+yg _ h+k _3h—k
(18).f= =52 (@)g=—0""  (@Bh="g  (@)k="p.

Next, the fact that v,_3. and vp43. are both singular leads to

1 3f+g
T, —x3 2

g 1 3f+yg
By, (9) = —2 -
yl(g) cfrl — 29 C.’,Ul — 3 2
2h 1 h-—k
+c
r1 — T2 Ir1 — I3 2

1 h—k
O (k) = e —— o=

ay1 (f) =—cC

8y1 (h) =c

From here it is straightforward to show that fk — gh is an S5 invariant with the property
Dy, (fk — gh) = 0, so Dy(fk — gh) = 0 for all y and thus fk — gh is a p-th power and an
invariant. Given that its degree is 2p, we conclude that fk — gh is a scalar multiple of o5.

To calculate this scalar, we calculate fk — gh explicitly, using formulas in Lemmas 12.2.6
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and 12.2.37, while disregarding all terms with a nonzero power of o3 (as we know from the
above that they don’t contribute to the final expression as fk — gh is a scalar multiple of o%).
We distinguish four cases, and claim that in all of them fk — gh # 0.

1. If p = 1 (mod 3) and m = =1 — ¢ is even, thenE+c:m+2cisevenandweget
3 3

(_1)m/2 m! 3m/2
Vp_3e = o (b @by +3b_®b_)+o03...
! O ) [R5 —2)
-1 m/24c 2¢)! /e
Up+3c:( )/2+ ot /Cz)+c oy ") (b @b —b_@by) 0.
IUETE (mf24 o) T1H (35 - 2)
e gh (—1)m/? m! (—1)m/2te (m + 2c¢)!
_g = m m . ’ m C m C . ’
O (m/2)- T35 —2) 9T (my2+ ol TG - 2)
. Ug’m/zag(m/2+c) . (bi + 30%)
(D | (—12)(252 — o)l(Z5E + ¢! L
Y= Tl o, Tl o, . 2
0% (et ot o) -T2 -2 112 Y- 2)
£0.

2. If p = 1 (mod 3) and m = %1 — ¢ is odd a similar proof shows that fk — gh # 0.

3. If p = 2 (mod 3) and m = %2 — ¢ is even a similar proof shows that fk — gh # 0.

4. If p = 2 (mod 3) and m = 1%2 — ¢ is odd a similar proof shows that fk — gh # 0.

We showed that fk— gh # 0, which shows that the only solutions to the system (12.2.39)
is A = B =0, which means that (v,_3.) N (vp—3.) = 0. Consequently,

Hilbyy, . = Hilbyy, (stana) — Hilby

2

Up_3e ) + Hﬂb<

1 1
p—3c | _ pt+3c 0
A-=2 7 W22 ° a2

(stand)/(vp—3c,Up+3c) ) T Hilb<vp+30 Vp—3¢)(Vp—3c)

O]

Lemma 12.2.40. The images of the vectors vy,v_ from Lemma 11.2.8 in the quotient

M, o(stand)/ (vp—3c, Upt3e) are nonzero.

Proof. Let us show that v; is not contained in (vp_3¢, vpt3c). As v_ can be calculated
from vy by the action of k(S3) € Hi(S3,h) and (vp—3c, Vpt3c) is an Hy o(S3, h) submodule,
so the claim for v_ will follow without any further computations. Further, noting that
degvy =p > p—3c = degv,_3. and degvy = p < p+ 3c = degvpy3c, the claim is equivalent
to showing that vy ¢ (vp—3.).

Assume the contrary, that v4 € (vp_3.). In that case there exists A € S3¢(h*) such that

Avp_3. = vy. Considering how these vectors transform under the action of S3 (v,—3. spans
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triv and vy spans the (12)-invariant part of stand), we determine that A needs to transform

like the (12)-invariant part of stand and thus needs to be of the form
A=gby +h(—b2 +3b2)

for some g € S3~L(h*)%, h € S372(h*)%3. We will consider the equation Av,_3. = v

modulo o3 to show it has no solutions. For that purpose, we distinguish two cases.

1. If p = 1 (mod 3), then
p=1
vy =03% (=by ®by +3b_ ®b_) mod o9

p—1

Up-ze =037 (by @by +3b_ ®b_) mod .

Modulo o2, the equation Av,_3. = vy becomes

p—1 p—1

03° (—by @by +3b-®@b_) = (gby +h(—b2 +3b2))- 0,7 (by @by +3b_ ®@b_) mod oo
05(=by @by +3b_ @b_) = (gb5 + h(—b% +3b%) - by) ® by
+ (3gbib_ + 3h(—b3 +3b%) - b_) ® b_ mod o9

~1
= <2g(—b2+ +30%) + h- 54ag> @by
1
+ (29(2b+b—) +3h - (—6q)> ® b_ mod os.

Reading off the coefficient of (—by @ by + 3b_ ® b_) we get
o5 = 0mod oy

which is a contradiction.

2. If p = 2 (mod 3), then
p—2
vy =037 (—(=b% +30%) @ by + 3(2b1b-) ® b_) mod o

p—2

Up_ze=03° (=03 +3b%) @by +3(2b4b_) ® b_) mod 0.

The equation Av,_3. = vy, similar to above, becomes

p—2

037 (—(—b2 +30%) @by +3(2b4b_)Rb_) =
p=2_,
= (gby + h(=b2 +3b2)) 057 ((—b2 +3b2) @by +3(2b1b_) @ b_)
o§(—(—b2 +3b%) @ by +3(2b4b_) ®b_) =
= (gby (—b% +3b%) + h(—b% +3b%)?) @ by
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+ 3(gby (2b4:b-) + h(—b2 + 3b2)(2b4:b-)) @ b_
o§(— (=% +3b%) @by +3(2b1b-) ®b_) = (g-5do3 + h - (—108)03b1) @ by
+3(9-6g+ h-10803b_) ® b_ mod oy,

leading to

which is a contradiction.

Lemma 12.2.41. Let
o+ My (stand)[—p] = M o(stand)/ (v—se, vpeac)

be the map of Hi (S3,h) modules given by o(f @ by) = f-v+. Then @(vp—3c) # 0.
Proof. Let ¢ : M .(stand)[—p] — M (stand) be the map of Hi (S3,h) modules given by

the same formula, so that ¢(v,—3.) = 0 if and only if
@(Upf?w) =A- Vp—3c + B - vpy3e

for some A, B € S(h*). Considering their behaviour under S, we see that A € S(h*)*® and
B = B'q for B’ € S(f)*)SS. We then calculate modulo o9, using the explicit expressions for

VU4, Up—3¢, Up4+3c from Lemma 12.2.6, and distinguishing two cases.
1. If p = 1 (mod 3), then

L_l
vy =03° (—by ®by +3b_ ®b_) mod o9
p—1
v_ =05% (b ®b_ +b_ ®by) mod o9
—1

Up—3c = UST%(?Mr ® by +3b_ ®b_) mod o3.

We calculate modulo oy:

p—1

O(vp_3c) = 05° (by -vy +3b_ -v_) mod oy

.
=057 ((=b2 +362) @by +3(2b,b_) ® b_) # 0 mod 03,

which proves the claim.

2. If p = 2 (mod 3), then

p—2

vy =03° (—(=b% +3b2) ® by + 3(2b4:b-) @ b_) mod 79
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p—2

v_ =037 ((—b3 +3b%) ®@b_ + (2b1b_) ® by ) mod o2
p—2

Upze =057 (=2 +3b2) @by +3(2b1b_) ©b_) mod o».

Similarly,

p—2

P(vpse) = 037 ((=b2 +3b%) - vy +3(2b4b_) - v_) mod o

057 ‘3((—(—172+ +302)2 +3(2b,.b_)?) @ by

+6(2b4b_)(—b2 +3b2) ® b_> mod o9

p=2 _
— 03 “(2-10803by @by + 6 - 10803b_ © b_) mod o

P2 41
(

= 2160s ® " (by @by +3b_ @b_) # 0 mod 0.

Lemma 12.2.42. The coefficient of z?P~' in the power series expansion of

-3 +3
1= 22 (2= 2P77¢ = 2. 2P — 2PT°)

around z =0 s 0.

Proof. The coefficient of z* in ﬁ is k+1, so the coefficient of z2P~! in the above expression

2-2p-1+1)—-(2p—1—-(p—3¢)+1)—2-2p—1—-p+1)—(2p—1—(p+3¢c)+1)=0.

O]

At this point in the proof of Theorem 12.2.2 we conclude that the Hilbert polynomial of
the irreducible module L .(stand) has the form (12.2.4). The following Lemma shows that
the only module with such Hilbert polynomial is M .(stand)/ (vp—3¢, V4, V—, Upy3e) itself.

Lemma 12.2.43. Let p > 3 and suppose that 0 < ¢ < p/3. Suppose that Q is an H; (S3,h)
module which is a quotient of M (stand)/ (Vp—3¢, U4, V—, Upy3e), with Hilbert polynomial

equal to

H’leQ(Z) = Hilelyc(Stand)/<vp—3(:7v+7v77vp+36> (Z) - M - Zp . HilbLl,c(Stand) (Z)_
— K . z3etp. Hilby, (sign)(?) — N - z2p*3CHilbLl’c(triv)(z) + 0(2%)

for some M, N, K > 0. Then:

1. M =0;
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2. K=N=0;
3. Q = M (stand)/ (vp—3c, Vg, V—, Uptac)-
Proof. 1. We distinguish two cases.

(a) If 0 < ¢ < p/6, we calculate the dimension of Q??~3¢. We have p + 3¢ < 2p — 3¢,

SO

dim Q%3¢ = dim Mff;sc(stand)/ (Up—3¢, Vg, V—, Upy3c)

— M -dim L} **(stand) — K - dim L} *(sign) — N - dim LY ,(triv).
By equation (12.2.3) we have that dim(Mlzif?’c(stand)/ (Up—3¢, Uy, U—, Upy3e)) €quals
2-(2p—3c+1)—(2p—3c—(p—3¢)+1)—2-(2p—3c—p+1)—(2p—3c—(p—3c)+1) = 6¢—2.

Equation (12.2.4) lets us conclude that

dim in_csc(stand) = dim Mf;gc(stand)/ (Up—3¢, Vg, V=, Upyac)

=2(p—3c+1)—1=2p—6¢c+1.

By Theorem 12.0.1 Hilby, (sign) = (I—ZP—?)C) “©

1—2
dimL’l’fcﬁc(sign) =(p—-6c+1)—2=p—6c—1.
We also know that dim L%C(triv) = 1. Putting it all together we get:
0<dimQ¥ 3 =(p—-1)—M-(2p—6c+1)—K-(p—6c—1)—N-1.
Rearranging and using ¢ < p/6 we get

p—2>6c—2
>M-2p—6c+1)+K-(p—6c+1)+N
> M- (2p—6c+1)
>M-(p+1).

The only nonnegative integer M satisfying this is M = 0.

(b) IfIf p/6 < ¢ < p/3, we have 2p — 3¢ < p+ 3c and similarly calculate the dimension
of QP3¢ getting:

0 < dim QP3¢ = dim Mf:gc(stand)/ (Up—3¢, Vg, U, Upy3e)

— M - dim L} (stand) — K - dim L(ic(sign) — N -dim L?i:p(triv)

,C
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=2 - (p+3c+1)—(p+3c—p+3c+1)-2(p+3c—p+1)—1)

-M-(2-3c+1)—Bc—p+3c+1)—K-1-N-(6c—p+1)
=2p—6c—2)—M-(p+1)—K—-N-(6c—p+1)
<(2p—-6c—2)—M-(p+1).

We rearrange this as
M-(p+1)<2p—6c—2<p+6c—6c—2=p—2,

and notice that the only nonnegative integer M satisfying this is M = 0.
2. Using part (1), we calculate the dimension in the degree 2p — 1 graded piece of @ as
dim Q%! = dim Mi]zfl(stand)/ (Up—3¢y Vg, U, Upg3c) —
— K - dim L]f;gcfl(sign) — N -dim L?i;l(triv)
=2-2p—(2p—1—-p+3c+1)—2-2p—1—-p+1)—(2p—1—p—3c+1))—
—K-(p—3c—14+1)—N-(Bc—1+1)
=—-K -(p—3c)— N -3c.

Using that dim Q%= > 0, p — 3¢ > 0 and 3¢ > 0, the only nonnegative K, N satisfying
this are K = N = 0.

3. Follows from parts (1) and (2).

We end this section with a conjecture.

Conjecture 12.2.44. The irreducible representation Li.(stand) of the rational Chered-
nik algebra Hi (S3,h) over an algebraically closed field of characteristic p > 3 for ¢ € Fp,
p/3 < c < p/2, is the quotient of the Verma module M .(stand) by the submodule generated

by vectors in degrees:
e —p+ 3c - one dimensional space, of type sign
e 3p — 3¢ - one dimensional space, of type triv
e p+ 3c - one dimensional space, of type sign
e 5p — 3¢ - one dimensional space, of type triv
Its character and Hilbert polynomial are

Z*p+3c 3p—3c

XLy c(stand) (2) = Xsp=(2) - ([Stand] — [sign] — [triv]z
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— [sign]2P T3¢ — [triv]z®P 3¢ + [stand]z4p>

) 2 _ z*p+3c o z3p73c _ zp+3c _ Z5p730 + 2Z4p
HZlbLl,c(Stand) (Z) = (1 _ 2)2 .

Notice that the vectors vy, v_ which are singular in the generic case are contained in the
submodule generated in degrees —p + 3¢ and 3p — 3c. We believe that this conjecture can be
proven by the same methods used throughout this chapter, however the proof is likely to be
lengthy. Supporting evidence for this conjecture comes from the computer code in Appendix
A.2. The output of that code tells us in which degrees singular vectors occur, for fixed p and
c. The conjectured formula for the degrees fits a pattern in the data. The Casimir operator
2 tells us how the singular vectors in a given degree behave as Ss-representations and allows

us to conjecture the character of the quotient.
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Appendix A

Magma code

One approach to finding singular vectors is the consider a particular bilinear form, the kernel

of which is the maximal proper graded submodule J; .(7) of a Verma module. This bilinear

form,

denoted B, is described in Section 2.5 [BaChl3a]. The form is graded so its kernel

in each degree may be considered, and the generators of these kernels are singular vectors.

Using

the symbolic programming language [Magma], we calculated the Gram matrices of the

form B and their kernels. We did this for many choices of parameters to generate data, from

which

Al

we were able to identify patterns and learn information about the singular vectors.

Magma code for M, .(Ss, triv)

The following code produces Gram matrices of the bilinear form B.

// We

7; // field characteristic
AlgebraicClosure(GF(p)); // algebraic closure of the finite field F_p
:= FunctionField (k) ; // let K = k(c)

3; // size of symmetric group
Sym(n); // S_n

1;

form the natural permutation module V, and use it define the action on

our modules

vV :=

2 M<[x]

A<[y]

PermutationModule (G,K) ;
>:= PolynomialRing(K,n);// PolynomialRing in n variables x[1], ..., x[n]
>:= PolynomialRing(K,n);// PolynomialRing in n variables y[1], ..., yl[n]

// Auxiliary ring, used to produce the monomial bases of S(h*) / S(h)

7 P o=

xdrag

ydrag

PolynomialRing (K,n-1) ;
:= hom< P -> M | x[1],x[2] >;
:= hom< P -> A | y[1]l-y[3], y[2]-y[3] >;
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21

22 // This is the quotient map S(V*) ->> S(h*). Here it is defined on
23 // S(Vx) = K[ x[1], x[2], x[3] 1. It is identity on x[1], x[2],

24 // and sends x[3] to -x[1]-x[2]

25 quot := hom< M -> M | x[1], x[2], -x[1]1-x[2]>;
26

27

28

29 ActOnTerm := function(s, term)

30 // input

31 // - s: an element of G

32 // - term: a single term of M = K[ x[1], x[2], x[3] ]
33 // output

34 // returns the value of s acting on term, using the permutation action of

S_3 on M
35
36 // we define the group action recursively, based on the degree of the term
37 case TotalDegree(M!term):
38 when O:
39 // group acts trivially on constants
40 return term;
41
42 when 1:
43 // iterate i between 1 and n to determine the monomial
44 for i in [1 .. n] do
45 case LeadingMonomial (term):
46 when x[i]:
a7 // in this case, our term is of the form coefficientx*x[i],
48 // use the permutation module V to complete the action
49 return LeadingCoefficient(term)*Polynomial (ElementToSequence ((V.1i
)*s) ,SetToSequence (MonomialsOfDegree (M,1)));
50 end case;
51 end for;
52
53 else:
54 // for higher order terms, use recursion
55 for i in [1 .. n] do
56 divisible ,quotient := IsDivisibleBy (term,x[il);
57 if divisible then
58 return $$(s,x[1]1)*$$(s,quotient);
59 break;
60 end if;
61 end for;
62 end case;

63 end function;
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Appendix A. Magma code

Ac
//
//
//
//
//

t := function(s,f)

input

- s: an element of G

- f: a polynomial in M = K[ x[1], x[2], x[3] 1]

output

returns the value of s acting on f, using the permutation action of S_3
sf := M!0;

for eachterm in Terms (f) do
// form the result by acting on each term of f, using the ActOnTerm
function
sf := sf + ActOnTerm(s,eachterm);

end for;

return sf;

end function;

PairTerms := function(ty,tx)
// input
// - ty: a single linear (degree 1) term of A = K[ y[1], y([2], y[3] 1
// - tx: a single linear (degree 1) term of M = K[ x[1], x[2], x[3] 1]
// output
// returns the natural pairing of <ty, tx>
a := -1;
b := -1;
for i,j in [1 .. n] do
if LeadingMonomial(ty) eq y[i] then a := i; end if;
if LeadingMonomial (tx) eq x[j] then b := j; end if;
end for;

assert not a eq -1;

assert not b eq -1;

return (a eq b) select LeadingCoefficient(ty)*LeadingCoefficient (tx) else
03

end function;
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Pair := function(fy, fx)
// input
// - fy: any linear element of A = K[ y[1], y[2], y[3] 1]
// - fx: any linear element of M = K[ x[1], x[2], x[3] ]
// output
// returns the natural pairing <fy, fx> by considering them as elments of h/
hx*x
result := K!0;

// by bilinearity, obtain result by considering each pair of terms
for yterm in Terms (fy) do
for xterm in Terms (fx) do
result := result + PairTerms(yterm,xterm);
end for;
end for;
return result;

end function;

d := function(y,term)

// input

// - y: a linear term of A = K[ y[1], y[2], y[3] ]

// - term: a single term of M = K[ x[1], x[2], x[3] 1]
// output

// returns d_y(term), the partial derivative of the term with respect to y

case TotalDegree(term):
when O:
// derivative of constant is zero

return O0;

when 1:
// derivative of linear term is given by pairing it with y

return Pair(y,term);

else:
// for higher order terms, use Leibniz rule for derivatives
for i in [1 .. n] do
divisible, quotient := IsDivisibleBy(term,x[i]);
if divisible then
return ( Pair(y,x[i])*quotient + x[i]l*$$(y,quotient) );
end if;
end for;

end case;

s end function;
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Deriv := function(y, f£)
// input
// - y: a linear term of A = K[ yl[1], y[2], y[3] ]
// - f: a polymomial in M = K[ x[1], x[2], x[3] ]
// output
// returns d_y(f), the partial derivative of f with respect to y
result := M!0;
// calculate the result by differentiating each term of f using the
function d
for eachterm in Terms (f) do
result := result + d(y,eachterm);
end for;
return result;
end function;

Dunkl := function(y,f)

// input

// - y: a linear term of A = K[ y[1], y[2], y[3] ]

// - f: a polymomial in M = K[ x[1], x[2], x[3] ]

// output

// returns the value of D_y(f), the Dunkl operator D_y applied to f

// The Dunkl operator has two parts, a derivative an a sum.
// We calculate these separately.

deriv := Deriv(y,f);

summands := [*x*];
// We must sum over reflections (ij) in G where 1 \leq i < j \leq n
for i,j in [1 .. nl do
if i 1t j then
s := G!(i,j); // the transposition s=(ij) is a reflection in S_n
alpha := x[i] - x[j];
summand := Pair(y,alpha)*(f - Act(s,f)) div (alpha);
Append (" summands , summand) ;
end if;

end for;

sum := M!O0;
for each in summands do sum := sum + each; end for;

return t*deriv - c*sum;

end function;
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Appendix A. Magma code

//

Bt
//
//
//
1/
//

With all the previous functions implemented, we are ready to implement

bilinear form B, in order to calculate the singular vectors.

:= function(ty,tx)

input

- ty: a single term of A K[ y[11, y[2], y[3] 1]

K[ x[1], x[2], x[3] 1

- tx: a single term of M
output

returns the value of B(ty, tx), using recursion.

// B should return zero if either input is zero

if (ty eq A!0) or (tx eq M!0) then return O; end if;

// B should only be calculated on inputs of the same degree
assert TotalDegree(A!ty) eq TotalDegree(M!tx);

// if both terms are in degree 0, return their product, since B(1,1)=1
if (TotalDegree(A!ty) eq 0) and (TotalDegree(M!ty) eq 0) then
return K!tx*x(M!ty);

else
// for higher order terms, use the recursive definition of B, by Dunkl
operators
for i in [1 .. n] do
divisible, quotient := IsDivisibleBy(ty,yl[i]);
if divisible then
// WARNING: this function only accepts single terms as input

// the result of y[i].tx may contain more than one term

the

// carefully compute the form on each term of y[i].tx using recursion

yf := Dunkl(y[il,tx);
answer := K!0;
for term in Terms(yf) do
answer := answer + $$(quotient, term);
end for;
return answer;
end if;
end for;

end if;

end function;
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B := function(fy,fx)

// input

// - fy: any element of A = K[ y[1], y[2], y[3] 1]
s // - fx: any element of M = K[ x[1], x[2], x[3] ]

// output

// returns the value of B(fy, fx).

answer := K!O;
for yterm in Terms (fy) do
for xterm in Terms (fx) do
answer := answer + Bt(yterm, xterm);
end for;
end for;
return answer;

end function;

// Using our bilinear form B, we now calculate the Gram matrices, by using
the standard monomial bases in each degree of S(h) and S(h*)
// In degree 0, the matrix is identity, on account of the dual bases chosen

BO := ScalarMatrix(dimtau, K!1);

// for storing the Gram matrix of the form B in each degree

matrices := [*x];

// for storing the monomial bases in each degree of K[ x[1], x[2] ]

xbases := [*x];

// for the monomial bases in each degree of KI[(y[1]l-y[3]), (y[2] - y[3])]

ybases := [*x];

for degree in [1] do
// compute the monomials of degree 1 in 2 variables, using P
monomials := MonomialsOfDegree(P,degree);
// using ydrag, map these monomials into monomials of
// K[(y[11-y[3]1), (y[2] - y[3]1)] and store in ybases
ybases [degree] := ydrag(monomials);
// using ydrag, map these monomials into monomials of
// K[ x[1], x[2] 1 and store in xbases

xbases [degree] := xdrag(monomials);

matrixEntries := [];
// to calculate the entries of the matrix, iteratate over the bases and

pair them using B

for j in [1 .. #xbases[degreel] do
for i in [1 .. #ybases[degreel] do
Append ("matrixEntries, <i,j,B(xbases[degree]l[j],ybases[degree][i])>);
end for;
end for;
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// compiles the matrixEntries we calculated into a matrix
matrix := Matrix (#ybases[degree] ,#xbases[degree] ,matrixEntries);
// save the matrix to the matrices array.

matrices [degree] := matrix;

// save the matrix to a file "B1"
SetOutputFile ( *Sprint (degree)) ;
print matrix;

UnsetOutputFile () ;

end for;

for degree in [2 .. 5xp] do
// compute the monomials of current degree in 2 variables, using P
monomials := MonomialsOfDegree (P,degree);
// using ydrag, map these monomials into monomials of
// K[(y[1]1-y[31), (y[2] - y[3])] and store in ybases
ybases [degree] := ydrag(monomials);
// using ydrag, map these monomials into monomials of
// K[ x[1], x[2] ] and store in xbases

xbases [degree] := xdrag(monomials);

matrixEntries := [];

// calculate matrix entries, using values from the previously computed

matrix
for i in [1 .. #ybases[degreell] do
for j in [1 .. #xbases[degreel] do

for ymonomial in ydrag(MonomialsOfDegree(P,1)) do
divisible ,quotient := IsDivisibleBy(ybases[degree]l[i], ymonomial);
if divisible then
row := Position(ybases[degree-1],quotient);
yx := quot (Dunkl (ymonomial ,xbases[degreel[jl));
if yx eq M!0 then
entry := K!0;
else
col := Transpose(Matrix(K,vector (yx)));
entry := (((bl[degree-1]) [row])*col) [1];

end if;

Append ("matrixEntries ,<i,j,entry>);
break;
end if;
end for;
end for;
end for;
// compiles the matrixEntries we calculated into a matrix
matrix := Matrix (#ybases[degree] ,#xbases[degree] ,matrixEntries);

bl[degree] := matrix;
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// save the matrix to the matrices array.
matrices [degree] := matrix;
// save the matrix to a file "Bd" where d is the current degree
SetOutputFile ("B"*Sprint (degree));
print mat;
UnsetOutputFile () ;
end for;

A.2 Magma code for M;(Ss, stand)

p = 11; // field characteristic

k := AlgebraicClosure(GF(p)); // algebraic closure of the finite field F_p
K<c> := FunctionField (k); // let K = k(c)

n := 3; // size of symmetric group

G := Sym(n); // S_n

t = 1;

// We form the natural permutation module V, and use it define the action on
our modules

V := PermutationModule (G,K);

// PolynomialRing which represents the structure S(V*) \otimes V. The

// mnotation [1,1,1,0,0,0] sets the "weights" of the variables, with x[1],

// x[2], x[3] having weight 1, and other variables have weight 0. This allows
// us to define the degree of a vector appropriately.

M<[x]> := PolynomialRing(K,[1,1,1,0,0,0]);

AssignNames ("M, ["x[1] ", "= [2]","x[3]","0(x1)","o(x2)", "o(x3)"]1);

// PolynomialRing which represent S(V) \otimes h. We then get the ring

// S(h) \otimes h by considering the subring spanned by y[1]-y[3], y[2]-y[3]
// in the first tensor leg.

A<[yl> := PolynomialRing(X,[1,1,1,0,01);

AssignNames ("A,["y[1]", "y 21", "y [3]","0o(yl-y3)","0o(y2-y3)"1);
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// Auxiliary ring, used to produce the monomial bases of S(hx*) / S(h)

P := PolynomialRing(K,n-1);

xdrag := hom< P -> M | x[1],x[2] >;

ydrag := hom< P -> A | y[1]1-y[3], y[2]1-y[3] >;

// This is the quotient map S(V*) \otimes V* ->> S(h*) \otimes \tau. On both
tensor legs, it is identity om x[1], x[2], and sends x[3] to -x[1]l-x[2].

quot := hom< M -> M | x[1], x[2], -x[1]1-x[2], x[4], x[5], -x[4] - x[5]1>;

// This is the quotient map S(V*) \otimes V* ->> S(Vx) \otimes \tau. It is
identity on the first tensor leg, and on the second tensor leg it is
identity on x[1], x[2], and sends x[3] to -x[1]-x[2].

standquot := hom< M -> M | x[1], x[2], x[3], x[4], x[5], -x[4] - x[5]>;

// This is the quotient map S(V*) \otimes V% ->> S(hx*) \otimes V*. On the
first tensor leg, it is identity on x[1], x[2], and sends x[3] to -x[1]-x
[2]. On the second tensor leg it is identity.

polyquot := hom< M -> M | x[1], x[2], -x[11-x[2], x[4], x[5], x[6]>;

ActOnTerm := function(s, term)

// input

// - s: an element of G

// - term: a single term of K[ x[1], x[2], x[3] ]

// output

// returns the value of s acting on term, using the permutation action of
S_3 on M

// The variables x[4], x[5], x[6] are not expected to appear in the input.

/

C
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/ we define the group action recursively, based on the degree of the term
ase WeightedDegree (M!term):
when O:

// group acts trivially on constants

return term;

when 1:
// iterate i between 1 and n to determine the monomial
for i in [1 .. n] do
case LeadingMonomial (term):
when x[i]:
// in this case, our term is of the form coefficientx*x[i],
// use the permutation module V to complete the action
return LeadingCoefficient (term)*Polynomial (ElementToSequence ((V.1i
)*s) ,S8etToSequence (MonomialsOfWeightedDegree(M,1)));
end case;

end for;
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else:
// for higher order terms, use recursion
for i in [1 .. n] do // iterate i between 1 and n
divisible ,quotient := IsDivisibleBy(term,x[il); // check if term is
divisible by x[il]
if divisible then // if so,
return $$(s,x[1]1)*$$(s,quotient); // action is group like, s.(x[1l]lx
[2]1)=(s.x[1]) (s.x[2])
break;
end if;
end for;
end case;

end function;

PolynomialAct := function(s,f)

// input

// - s: an element of G

// - f: a polymomial in M = K[ x[1], x[2], x[3] ]
// output

// returns the value of s acting on f, using the permutation action of S_3

// The variables x[4], x[5], x[6] are not expected to appear in the input.

sf := M!0;

for eachterm in Terms(f) do
// form the result by acting on each term of f, using the ActOnTerm
function
sf := sf + ActOnTerm(s,eachterm);

end for;

return sf;

end function;

ActOnV := function(s,v)

// input

// - s: an element of G

// - v: a linear term in V, considered as an element in K[ x[4], =x[5], x[6]
] of the form a*x[4] + b*x[5] + c*x[6]

// output

// returns the value of s acting on v, using the permutation action of S_3

sv := ( VI([ Coefficient(v,x[4],1), Coefficient(v,x[5],1), Coefficient(v,x
[61,1) 1) )* s;
return Polynomial ( ElementToSequence(sv) , [x[4], x[5], x[6]1] );

end function;
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116

117

118

119 ActOnVector := function(s, fv)

120 // input

121 // - s: an element of G

122 // - fv: an element of M = K[x[1], x[2], x[3], x[4], x[5], x[6] ]
123 // output

124 // returns the value of s acting on the vector fv

126 // complete the action by considering the \otimes x[1], \otimes x[2], and \
otimes x[3] components of fv

127 fl1:=Coefficient (fv,x[4],1); // component attached to \otimes x[1]

128 f2:=Coefficient (fv,x[5],1); // component attached to \otimes x[2]

129 f3:=Coefficient (fv,x[6],1); // component attached to \otimes x[3]

131 return ActOnPolynomial(s,f1)*ActOnV(s,x[4]) + ActOnPolynomial(s,f2)*ActOnV(
s,x[5]) + ActOnPolynomial(s,f3)*ActOnV(s,x[6]);

132 end function;

137 PairTerms := function(ty,tx)

138 // input

139 // - ty: a single linear (degree 1) term of A K[ y[11, y([2], y[31 1]

K[ x[1], =x[2], x[3] 1]

140 // - tx: a single linear (degree 1) term of M
141 // output

142 // returns the natural pairing of <ty, tx> by considering them as elements

of V/Vx
143
144 a := -1;
145 b := -1;
146 for i,j in [1 .. n] do
147 if LeadingMonomial(ty) eq y[i] then a := i; end if;
148 if LeadingMonomial (tx) eq x[j] then b := j; end if;
149 end for;
150 assert not a eq -1;
151 assert not b eq -1;

153 return (a eq b) select LeadingCoefficient(ty)*LeadingCoefficient (tx) else
03

154 end function;
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Pair := function(fy, fx)
// input
// - fy: any linear element of A = K[ y[1], y[2], y[3] 1]
// - fx: any linear element of M = K[ x[1], x[2], x[3] ]
// output
// returns the natural pairing <fy, fx> by considering them as elments of
hx*
result := K!0;

// by bilinearity, obtain result by considering each pair of terms
for yterm in Terms (fy) do
for xterm in Terms (fx) do
result := result + PairTerms(yterm,xterm);
end for;
end for;

return result;

end function;

d
//
//

//
//
//

:= function(y,term)

input

- y: an element of h, interpreted as a linear term of A = K[ y[1], y[2]
y[3] 1]

- term: a single term of M = K[ x[1], x[2], x[3] 1]

output

returns d_y(term), the partial derivative of the term with respect to y

case WeightedDegree (term) :
when O:
// derivative of constant is zero

return O0;

when 1:
// derivative of linear term is given by pairing it with y

return Pair(y,term);

else:
// for higher order terms, use Leibniz rule for derivatives
for i in [1 .. n] do
divisible, quotient := IsDivisibleBy(term,x[i]);
if divisible then
return ( pair(y,x[i])*quotient + x[i]*$$(y,quotient) );
end if;
end for;

end case;

end function;

h/

>

213



205

206

207

208

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

Appendix A. Magma code

Deriv := function(y, fx)

// input

// - y: an element of V, interpreted as a linear term of A = K[ y[1], y[2],
y[3]1 1

// - f: a polymomial in M = K[ x[1], x[2], x[3] ]

// output

// returns d_y(f), the partial derivative of f with respect to y
// The variables x[4], x[5], x[6] are not expected to appear in the input.
result := M!0;
for term in Terms(£fx) do
result := result + d(y,term);
end for;
return result;

end function;

Dunkl := function(y,fv)

// input

// - y: a linear term of K[ y[1], y[2], y[3] ], understood as an element of
N

// - fv: a vector in M = K[ x[1], x[2], x[3], x[4], x[5], x[6] ], understood

as an element of SV* \otimes Vx*
// output
// returns the value of D_y(f), the Dunkl operator D_y applied to f

// The input vector is of the form fv = f1 \otimes x[1] + £2 \otimes x[2] +
£f3 \otimes x[3]

fl1:=Coefficient (fv,x[4],1);

f2:=Coefficient (fv,x[5],1);

f3:=Coefficient (fv,x[6],1);

df := Deriv(y,f1)*x[4] + Deriv(y,f2)*x[56] + Deriv(y,£f3)*x[6];

summands := [*x];

// We sum over reflections s=(ij) with 1 \leq i < j \leq n

// We compute the Dunkl operator on the \otimes x[1] component

for i,j in [1 .. n] do
if i 1t j then // we have a transposition s=(ij) and \alpha_s = x_i - x_j
s = G!'(i,3);
alpha := x[i] - x[j];
summand := ( Pair(y,alpha)*(f1 - ActOnPolynomial(s,f1)) div (alpha) )=x*

ActOnV(s,x[4]);
Append (" summands , summand) ;
end if;

end for;
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// We compute the Dunkl operator on the \otimes x[2] component
for i,j in [1 .. n] do
if i 1t j then
s = G!'(i,3);
alpha := x[i] - x[j];

summand := ( Pair(y,alpha)*(f2 - ActOnPolynomial(s,f2)) div (alpha)

ActOnV(s,x[51);
Append (" summands , summand) ;
end if;

end for;

// We compute the Dunkl operator on the \otimes x[3] component
for i,j in [1 .. n] do
if i 1t j then
s = G'(i,3);
alpha := x[il - x[jl;

summand := ( Pair(y,alpha)*(£f3 - ActOnPolynomial(s,f3)) div (alpha)

ActOnV(s,x[6]);

Append (" summands , summand) ;

end if;
end for;
sum := M!0;
for summand in summands do sum := sum + summand; end for;
return t*df - c*sum;

end function;

Bt
/7
//
/7
/7
//

:= function(tx,ty)

input

- ty: a single term of A = K[ y[1], y([2], y[3], y[4], y[5] 1]
- tx: a single term of M = K[ x[1], x[2], x[3], x[4], x[5],
output

returns the value of B(ty, tx), using recursion.

// B should return zero if either input is zero

if (ty eq A!'0) or (tx eq M!0) then return 0; end if;

// B should only be calculated on inputs of the same degree
assert WeightedDegree(A!ty) eq WeightedDegree(M!tx);

x[6] ]

) *

) *
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294 // In degree 0, B is given by the pairing of tau and taux.

295 if (WeightedDegree(A!ty) eq 0) and (WeightedDegree (M!tx) eq 0) then

296 for i in [4, 5, 6] do

297 case LeadingMonomial (tx):

298 when x[i]:

299 case LeadingMonomial (ty):

300 when y[4]:

301 return LeadingCoefficient(tx)*LeadingCoefficient (ty)*pair(y[1]l-y
[31,x[i-31);

302 when y[5]:

303 return LeadingCoefficient (tx)*LeadingCoefficient (ty)*pair(y[2]-y
[31,x[i-3]1);

304 end case;

305 end case;

306 end for;

307

308 else

309 for i in [1,2,3] do

310 divisible, quotient := IsDivisibleBy(ty,yl[il);

311 // WARNING: this function only accepts single terms as input

312 // the result of y[i].tx may contain more than one term, so

313 // recursively compute the form on each term of y[i].tx

314 if divisible then

315 ytx := Dunkl(y[il,tx);

316 answer := K!0;

317 for term in Terms(ytx) do

318 answer := answer + $$(term, quotient);

319 end for;

320 return answer;

321 end if;

322 end for;

323 end if;

324 end function;

326

327 B := function(fx, fy)

328 answer := K!O0;

329 for yterm in Terms (fy) do

330 for xterm in Terms (fx) do

331 answer := answer + Bt(xterm, yterm);
332 end for;

333 end for;

334 return answer;

335 end function;
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